466 research outputs found

    Viscosity Dependence of the Folding Rates of Proteins

    Full text link
    The viscosity dependence of the folding rates for four sequences (the native state of three sequences is a beta-sheet, while the fourth forms an alpha-helix) is calculated for off-lattice models of proteins. Assuming that the dynamics is given by the Langevin equation we show that the folding rates increase linearly at low viscosities \eta, decrease as 1/\eta at large \eta and have a maximum at intermediate values. The Kramers theory of barrier crossing provides a quantitative fit of the numerical results. By mapping the simulation results to real proteins we estimate that for optimized sequences the time scale for forming a four turn \alpha-helix topology is about 500 nanoseconds, whereas the time scale for forming a beta-sheet topology is about 10 microseconds.Comment: 14 pages, Latex, 3 figures. One figure is also available at http://www.glue.umd.edu/~klimov/seq_I_H.html, to be published in Physical Review Letter

    Like-charge attraction through hydrodynamic interaction

    Full text link
    We demonstrate that the attractive interaction measured between like-charged colloidal spheres near a wall can be accounted for by a nonequilibrium hydrodynamic effect. We present both analytical results and Brownian dynamics simulations which quantitatively capture the one-wall experiments of Larsen and Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure

    Influence of Hydrodynamic Interactions on Mechanical Unfolding of Proteins

    Full text link
    We incorporate hydrodynamic interactions in a structure-based model of ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak force when stretching the protein at constant speed, especially at larger speeds. Hydrodynamic interactions are also shown to facilitate unfolding at constant force and inhibit stretching by fluid flows.Comment: to be published in Journal of Physics: Condensed Matte

    Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface

    Get PDF
    We describe direct imaging measurements of the collective and relative diffusion of two colloidal spheres near a flat plate. The bounding surface modifies the spheres' dynamics, even at separations of tens of radii. This behavior is captured by a stokeslet analysis of fluid flow driven by the spheres' and wall's no-slip boundary conditions. In particular, this analysis reveals surprising asymmetry in the normal modes for pair diffusion near a flat surface.Comment: 4 pages, 4 figure

    A unified approach for the solution of the Fokker-Planck equation

    Full text link
    This paper explores the use of a discrete singular convolution algorithm as a unified approach for numerical integration of the Fokker-Planck equation. The unified features of the discrete singular convolution algorithm are discussed. It is demonstrated that different implementations of the present algorithm, such as global, local, Galerkin, collocation, and finite difference, can be deduced from a single starting point. Three benchmark stochastic systems, the repulsive Wong process, the Black-Scholes equation and a genuine nonlinear model, are employed to illustrate the robustness and to test accuracy of the present approach for the solution of the Fokker-Planck equation via a time-dependent method. An additional example, the incompressible Euler equation, is used to further validate the present approach for more difficult problems. Numerical results indicate that the present unified approach is robust and accurate for solving the Fokker-Planck equation.Comment: 19 page

    Helicobacter pylori Membrane Vesicles Stimulate Innate Pro- and Anti-Inflammatory Responses and Induce Apoptosis in Jurkat T Cells

    Get PDF
    Persistent Helicobacter pylori infection induces chronic inflammation in the human gastric mucosa, which is associated with development of peptic ulceration, gastric atrophy, and gastric adenocarcinoma. It has been postulated that secretion of immunomodulatory molecules by H. pylori facilitates bacterial persistence, and membrane vesicles (MV), which have the potential to cross the gastric epithelial barrier, may mediate delivery of these molecules to host immune cells. However, bacterial MV effects on human immune cells remain largely uncharacterized to date. In the present study, we investigated the immunomodulatory effects of H. pylori MV with and without the vacuolating cytotoxin, VacA, which inhibits human T cell activity. We show a high degree of variability in the toxin content of vesicles between two H. pylori strains (SS1 and 60190). Vesicles from the more toxigenic 60190 strain contain more VacA (s1i1 type) than vesicles from the SS1 strain (s2i2 VacA), but engineering the SS1 strain to produce s1i1 VacA did not increase the toxin content of its vesicles. Vesicles from all strains tested, including a 60190 isogenic mutant null for VacA, strongly induced interleukin-10 (IL-10) and IL-6 production by human peripheral blood mononuclear cells independently of the infection status of the donor. Finally, we show that H. pylori MV induce T cell apoptosis and that this is enhanced by, but not completely dependent on, the carriage of VacA. Together, these findings suggest a role for H. pylori MV in the stimulation of innate pro- and anti-inflammatory responses and in the suppression of T cell immunity

    Chaperone-assisted translocation of a polymer through a nanopore

    Full text link
    Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy ϵ\epsilon between the chaperone and the chain and the chaperone concentration NcN_c can greatly improve the translocation probability. Particularly, with increasing the chaperone concentration a maximum translocation probability is observed for weak binding. For a fixed chaperone concentration, the histogram of translocation time τ\tau has a transition from long-tailed distribution to Gaussian distribution with increasing ϵ\epsilon. τ\tau rapidly decreases and then almost saturates with increasing binding energy for short chain, however, it has a minimum for longer chains at lower chaperone concentration. We also show that τ\tau has a minimum as a function of the chaperone concentration. For different ϵ\epsilon, a nonuniversal dependence of τ\tau on the chain length NN is also observed. These results can be interpreted by characteristic entropic effects for flexible polymers induced by either crowding effect from high chaperone concentration or the intersegmental binding for the high binding energy.Comment: 10 pages, to appear in J. Am. Chem. So

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    Collective dynamics of colloids at fluid interfaces

    Full text link
    The evolution of an initially prepared distribution of micron sized colloidal particles, trapped at a fluid interface and under the action of their mutual capillary attraction, is analyzed by using Brownian dynamics simulations. At a separation \lambda\ given by the capillary length of typically 1 mm, the distance dependence of this attraction exhibits a crossover from a logarithmic decay, formally analogous to two-dimensional gravity, to an exponential decay. We discuss in detail the adaption of a particle-mesh algorithm, as used in cosmological simulations to study structure formation due to gravitational collapse, to the present colloidal problem. These simulations confirm the predictions, as far as available, of a mean-field theory developed previously for this problem. The evolution is monitored by quantitative characteristics which are particularly sensitive to the formation of highly inhomogeneous structures. Upon increasing \lambda\ the dynamics show a smooth transition from the spinodal decomposition expected for a simple fluid with short-ranged attraction to the self-gravitational collapse scenario.Comment: 13 pages, 12 figures, revised, matches version accepted for publication in the European Physical Journal

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances rξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
    corecore