127 research outputs found

    Intraspecific Geographic Variation of Fragrances Acquired by Orchid Bees in Native and Introduced Populations

    Get PDF
    Male orchid bees collect volatiles, from both floral and non-floral sources, that they expose as pheromone analogues (perfumes) during courtship display. The chemical profile of these perfumes, which includes terpenes and aromatic compounds, is both species-specific and divergent among closely related lineages. Thus, fragrance composition is thought to play an important role in prezygotic reproductive isolation in euglossine bees. However, because orchid bees acquire fragrances entirely from exogenous sources, the chemical composition of male perfumes is prone to variation due to environmental heterogeneity across habitats. We used Gas Chromatography/Mass Spectrometry (GC/MS) to characterize the perfumes of 114 individuals of the green orchid bee (Euglossa aff. viridissima) sampled from five native populations in Mesoamerica and two naturalized populations in the southeastern United States. We recorded a total of 292 fragrance compounds from hind-leg extracts, and found that overall perfume composition was different for each population. We detected a pronounced chemical dissimilarity between native (Mesoamerica) and naturalized (U.S.) populations that was driven both by proportional differences of common compounds as well as the presence of a few chemicals unique to each population group. Despite these differences, our data also revealed remarkable qualitative consistency in the presence of several major fragrance compounds across distant populations from dissimilar habitats. In addition, we demonstrate that naturalized bees are attracted to and collect large quantities of triclopyr 2-butoxyethyl ester, the active ingredient of several commercially available herbicides. By comparing incidence values and consistency indices across populations, we identify putative functional compounds that may play an important role in courtship signaling in this species of orchid bee

    Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini)

    Get PDF
    The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific “filtering” of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans
    corecore