1,752 research outputs found

    Remote chance of recontact

    Get PDF
    The ejection of appendages with uncertain drag characteristics presents a concern for eventual recontact. Recontact shortly after release can be prevented by avoiding ejection in a plane perpendicular to the velocity. For ejection tangential to the orbit, the likelihood of recontact within a year is high in the absence of drag and oblateness. The optimum direction of ejection of the thermal shield cable and an overestimate of the recontact probability are determined for the Cosmic Background Explorer (COBE) mission when drag, oblateness, and solar/lunar perturbations are present. The probability is small but possibly significant

    GOES-I/M ascent maneuvers from transfer orbit to station

    Get PDF
    The Geostationary Operational Environmental Satellite (GOES)-I/M station acquisition sequence consists nominally of three in-plane/out-of-plane maneuvers at apogee on the line of relative nodes and a small in-plane maneuver at perigee. Existing software to determine maneuver attitude, ignition time, and burn duration required modification to optimize the out-of-plane parts and admit the noninertial, three-axis stabilized attitude. The Modified Multiple Impulse Station Acquisition Maneuver Planning Program (SENARIO2) was developed from its predecessor, SCENARIO, to optimize the out-of-plane components of the impulsive delta-V vectors. Additional new features include commputation of short term J sub 2 perturbations and output of all premaneuver and postmaneuver orbit elements, coarse maneuver attitudes, propellant usage, spacecraft antenna aspect angles, and ground station coverage. The output data are intended to be used in the launch window computation and by the maneuver targeting computation (General Maneuver (GMAN) Program) software. The maneuver targeting computation in GMAN was modified to admit the GOES-I/M maneuver attitude. Appropriate combinations of ignition time, burn duration, and attitude enable any reasonable target orbit to be achieved

    Identifying the challenges and facilitators of implementing a COPD care bundle.

    Get PDF
    BACKGROUND: Care bundles have been shown to improve outcomes, reduce hospital readmissions and reduce length of hospital stay; therefore increasing the speed of uptake and delivery of care bundles should be a priority in order to deliver more timely improvements and consistent high-quality care. Previous studies have detailed the difficulties of obtaining full compliance to bundle elements but few have described the underlying reasons for this. In order to improve future implementation this paper investigates the challenges encountered by clinical teams implementing a chronic obstructive pulmonary disease (COPD) care bundle and describes actions taken to overcome these challenges. METHODS: An initial retrospective documentary analysis of data from seven clinical implementation teams was undertaken to review the challenges faced by the clinical teams. Three focus groups with healthcare professionals and managers explored solutions to these challenges developed during the project. RESULTS: Documentary analysis identified 28 challenges which directly impacted implementation of the COPD care bundle within five themes; staffing, infrastructure, process, use of improvement methodology and patient and public involvement. Focus groups revealed that the five most significant challenges for all groups were: staff too busy, staff shortages, lack of staff engagement, added workload of the bundle and patient coding issues. The participants shared facilitating factors used to overcome issues including: shifting perceptions to improve engagement, further education sessions to increase staff participation and gaining buy-in from managers through payment frameworks. CONCLUSIONS: Maximising the impact of a care bundle relies on its successful and timely implementation. Teams implementing the COPD care bundle encountered challenges that were common to all teams and sites. Understanding and learning from the challenges faced by previous endeavours and identifying the facilitators to overcoming these barriers provides an opportunity to mitigate issues that waste time and resources, and ensures that training can be tailored to the anticipated challenges

    A rival for Babcock's star: the extreme 30-kG variable magnetic field in the Ap star HD 75049

    Get PDF
    The extraordinary magnetic Ap star HD 75049 has been studied with data obtained with the European Southern Observatory Very Large Telescope and 2.2-m telescopes. Direct measurements reveal that the magnetic field modulus at maximum reaches 30 kG. The star shows photometric, spectral and magnetic variability with a rotation period of 4.049 d. Variations of the mean longitudinal magnetic field can be described to first order by a centred dipole model with an inclination i= 25°, an obliquity β= 60° and a polar field Bp= 42 kG. The combination of the longitudinal and surface magnetic field measurements implies a radius of R= 1.7 R⊙, suggesting that the star is close to the zero-age main sequence. HD 75049 displays moderate overabundances of Si, Ti, Cr, Fe and large overabundances of rare earth elements. This star has the second strongest magnetic field of any main-sequence star after Babcock's star, HD 215441, which it rivals

    Vertex Fault Tolerant Additive Spanners

    Full text link
    A {\em fault-tolerant} structure for a network is required to continue functioning following the failure of some of the network's edges or vertices. In this paper, we address the problem of designing a {\em fault-tolerant} additive spanner, namely, a subgraph HH of the network GG such that subsequent to the failure of a single vertex, the surviving part of HH still contains an \emph{additive} spanner for (the surviving part of) GG, satisfying dist(s,t,H{v})dist(s,t,G{v})+βdist(s,t,H\setminus \{v\}) \leq dist(s,t,G\setminus \{v\})+\beta for every s,t,vVs,t,v \in V. Recently, the problem of constructing fault-tolerant additive spanners resilient to the failure of up to ff \emph{edges} has been considered by Braunschvig et. al. The problem of handling \emph{vertex} failures was left open therein. In this paper we develop new techniques for constructing additive FT-spanners overcoming the failure of a single vertex in the graph. Our first result is an FT-spanner with additive stretch 22 and O~(n5/3)\widetilde{O}(n^{5/3}) edges. Our second result is an FT-spanner with additive stretch 66 and O~(n3/2)\widetilde{O}(n^{3/2}) edges. The construction algorithm consists of two main components: (a) constructing an FT-clustering graph and (b) applying a modified path-buying procedure suitably adopted to failure prone settings. Finally, we also describe two constructions for {\em fault-tolerant multi-source additive spanners}, aiming to guarantee a bounded additive stretch following a vertex failure, for every pair of vertices in S×VS \times V for a given subset of sources SVS\subseteq V. The additive stretch bounds of our constructions are 4 and 8 (using a different number of edges)

    Six months of mass outflow and inclined rings in the ejecta of V1494 Aql

    Get PDF
    V1494 Aql was a very fast nova which reached a visual maximum of mv≃ 4.0 by the end of 1999 December 3. We report observations from 4 to 284 d after discovery, including submillimetre- and centimetre-band fluxes, a single MERLIN image and optical spectroscopy in the 410 to 700 nm range. The extent of the radio continuum emission is consistent with a recent lower distance estimate of 1.6 kpc. We conclude that the optical and radio emission arises from the same expanding ejecta. We show that these observations are not consistent with simple kinematical spherical shell models used in the past to explain the rise and fall of the radio flux density in these objects. The resolved remnant structure is consistent with an inclined ring of enhanced density within the ejecta. Optical spectroscopy indicates likely continued mass ejection for over 195 d, with the material becoming optically thin in the visible sometime between 195 and 285 d after outburst

    The Chilling Effect of Governance-by-Data on Data Markets

    Get PDF
    Big data has become an important resource not only for commerce but also for governance. Governance-by-data seeks to take advantage of the bulk of data collected by private firms to make law enforcement more efficient. It can take many forms, including setting enforcement priorities, affecting methods of proof, and even changing the content of legal norms. For instance, car manufacturers can use real-time data on the driving habits of drivers to learn how their cars respond to different driving patterns. If shared with the government, the same data can be used to enforce speed limits or even to craft personalized speed limits for each driver. The sharing of data for the purpose of law enforcement raises obvious concerns for civil liberties. Indeed, over the past two decades, scholars have focused on the risks arising from such data sharing for privacy and freedom. So far, however, the literature has generally overlooked the implications of such dual use of data for data markets and data-driven innovation. In this Essay, we argue that governance-by-data may create chilling effects that could distort data collection and data-driven innovation. We challenge the assumptions that incentives to collect data are a given and that firms will continue to collect data notwithstanding governmental access to such data. We show that, in some instances, an inverse relationship exists between incentives for collecting data and sharing it for the purpose of governance. Moreover, the incentives of data subjects to allow the collection of data by private entities might also change, thereby potentially affecting the efficiency of data-driven markets and, subsequently, data-driven innovation. As a result, data markets might not provide sufficient and adequate data to support digital governance. This, in turn, might significantly affect welfare
    corecore