12 research outputs found

    Mixing of Active and Sterile Neutrinos

    Full text link
    We investigate mixing of neutrinos in the ν\nuMSM (neutrino Minimal Standard Model), which is the MSM extended by three right-handed neutrinos. Especially, we study elements of the mixing matrix ΘαI\Theta_{\alpha I} between three left-handed neutrinos να\nu_\alpha (α=e,μ,τ\alpha = e,\mu,\tau) and two sterile neutrinos NIN_I (I=2,3I=2,3) which are responsible to the seesaw mechanism generating the suppressed masses of active neutrinos as well as the generation of the baryon asymmetry of the universe (BAU). It is shown that ΘeI\Theta_{eI} can be suppressed by many orders of magnitude compared with ΘμI\Theta_{\mu I} and ΘτI\Theta_{\tau I}, when the Chooz angle θ13\theta_{13} is large in the normal hierarchy of active neutrino masses. We then discuss the neutrinoless double beta decay in this framework by taking into account the contributions not only from active neutrinos but also from all the three sterile neutrinos. It is shown that N2N_2 and N3N_3 give substantial, destructive contributions when their masses are smaller than a few 100 MeV, and as a results ΘeI\Theta_{e I} receive no stringent constraint from the current bounds on such decay. Finally, we discuss the impacts of the obtained results on the direct searches of N2,3N_{2,3} in meson decays for the case when N2,3N_{2,3} are lighter than pion mass. We show that there exists the allowed region for N2,3N_{2,3} with such small masses in the normal hierarchy case even if the current bound on the lifetimes of N2,3N_{2,3} from the big bang nucleosynthesis is imposed. It is also pointed out that the direct search by using π+e++N2,3\pi^+ \to e^+ + N_{2,3} and K+e++N2,3K^+ \to e^+ + N_{2,3} might miss such N2,3N_{2,3} since the branching ratios can be extremely small due to the cancellation in ΘeI\Theta_{eI}, but the search by K+μ++N2,3K^+ \to \mu^+ + N_{2,3} can cover the whole allowed region by improving the measurement of the branching ratio by a factor of 5.Comment: 30 pages, 32 figure

    Freeze-out of baryon number in low-scale leptogenesis

    No full text
    Low-scale leptogenesis provides an economic and testable description of the origin of the baryon asymmetry of the Universe. In this scenario, the baryon asymmetry of the Universe is reprocessed from the lepton asymmetry by electroweak sphaleron processes. Provided that sphalerons are fast enough to maintain equilibrium, the values of the baryon and lepton asymmetries are related to each other. Usually, this relation is used to find the value of the baryon asymmetry at the time of the sphaleron freeze-out. To put in other words, the formula which is valid only when the sphalerons are fast, is applied at the moment when they are actually switched off. In this paper, we examine the validity of such a treatment. To this end, we solve the full system of kinetic equations for low-scale leptogenesis. This system includes equations describing the production of the lepton asymmetry in oscillations of right-handed neutrinos, as well as a separate kinetic equation for the baryon asymmetry. We show that for some values of the model parameters, the corrections to the standard approach are sizeable. We also present a feasible improvement to the ordinary procedure, which accounts for these corrections

    A facility to search for hidden particles at the CERN SPS: the SHiP physics case.

    Get PDF
    The standard model of elementary particle physics has provided a consistent description of Nature's fundamental constituents and their interactions. Its predictions have been tested and confirmed by numerous experiments. The Large Hadron Collider's runs at 7 and 8 TeV culminated in the discovery of a Higgs boson-like particle with the mass of about 126 GeV—the last critical standard model component [1–5]. Thus for the first time we are in the situation when all the particles, needed to explain the results of all previous accelerator experiments have been found. At the same time, no significant deviations from the standard model were found in direct or in indirect searches for new physics (see e.g. the summary of the recent search results in [6–25] and most up-to-date information at [26–29]). For this particular value of the Higgs mass it is possible that the standard model remains mathematically consistent and valid as an effective field theory up to a very high energy scale, possibly all the way to the scale of quantum gravity, the Planck scale [30–32]

    Long-lived particles at the energy frontier: the MATHUSLA physics case

    No full text
    corecore