539 research outputs found

    Formation of capillary bridges in AFM-like geometry

    Full text link
    We discuss the phase diagram of fluid confined in AFM-like geometry. It combines the properties of capillary condensation and complete filling of a wedge.Comment: 9 pages, 7 figure

    The influence of line tension on the formation of liquid bridges

    Full text link
    The formation of liquid bridges between a planar and conical substrates is analyzed macroscopically taking into account the line tension. Depending on the value of the line tension coefficient \tau and geometric parameters of the system one observes two different scenarios of liquid bridge formation upon changing the fluid state along the bulk liquid-vapor coexistence. For \tau > \tau * (\tau * < 0) there is a first-order transition to a state with infinitely thick liquid bridge. For \tau < \tau * the scenario consists of two steps: first there is a first-order transition to a state with liquid bridge of finite thickness which upon further increase of temperature is followed by continuous growth of the thickness of the bridge to infinity. In addition to constructing the relevant phase diagram we examine the dependence of the width of the bridge on thermodynamic and geometric parameters of the system.Comment: 4 pages, 5 figure

    The evolution of a Ku-Band satellite network

    Get PDF
    The purpose of this study was to undertake the management and development of CTS terminals and time on appropriate Ku-Band satellites was procured. A community of public service users who have readily addressable needs and resources to pay for services on an ad hoc Ku-Band network was developed and a test network for selected users was managed

    A novel approach to structural load control using intelligent actuators

    Get PDF
    The recent trend towards large multi-MW wind turbines resulted in the role of the control system becoming increasingly important. The extension of the role of the controller to alleviate structural loads has motivated the exploration of novel control strategies, which seek to maximise load reduction by exploiting the blade pitch system. The reduction of blade fatigue loads through individual blade pitch control is one of the examples. A novel approach to reduction of the unbalanced rotor loads by pitch control is presented in this paper. Each blade is equipped with its own actuator,sensors and controller. These local blade control loops operate in isolation without a need of communication with each other. The single blade control approach to regulation of unbalanced rotor loads presented in this paper has an important advantage of being relatively easy to design and tune. Furthermore, it does not affect the operation of the central controller and the latter need not be re-designed when used in conjunction with the single blade controllers. Their performance is assessed using BLADED simulations

    Mesoscopic analysis of Gibbs' criterion for sessile nanodroplets on trapezoidal substrates

    Full text link
    By taking into account precursor films accompanying nanodroplets on trapezoidal substrates we show that on a mesoscopic level of description one does not observe the phenomenon of liquid-gas-substrate contact line pinning at substrate edges. This phenomenon is present in a macroscopic description and leads to non-unique contact angles which can take values within a range determined by the so-called Gibbs' criterion. Upon increasing the volume of the nanodroplet the apparent contact angle evaluated within the mesoscopic approach changes continuously between two limiting values fulfilling Gibbs' criterion while the contact line moves smoothly across the edge of the trapezoidal substrate. The spatial extent of the range of positions of the contact line, corresponding to the variations of the contact angle between the values given by Gibbs' criterion, is of the order of ten fluid particle diameters.Comment: 23 pages, 27 figure

    Left Atrial Function Is Associated with Earlier Need for Cardiac Surgery in Moderate to Severe Mitral Regurgitation: Usefulness in Targeting for Early Surgery

    Get PDF
    BACKGROUND: The aim of this study was to determine whether assessment of left atrial (LA) function helps identify patients at risk for early deterioration during follow-up with mitral valve prolapse and mitral regurgitation. METHODS: Patients with moderate to severe mitral regurgitation but no guideline-based indications for surgery were retrospectively identified from a dedicated clinical database. Maximal and minimal LA volumes were used to derive total LA emptying fraction ([maximal LA volume - minimal LA volume]/maximal L volume × 100%). Average values of peak contractile, conduit, and reservoir strain were obtained using two-dimensional speckle-tracking imaging. The study outcome was time to mitral surgery. RESULTS: One hundred seventeen patients were included; median follow-up was 18 months. Sixty-eight patients underwent surgery. Receiver operating characteristic curves were used to derive optimal cutoffs for TLAEF (>50.7%) and strain (reservoir, >28.5%; contractile, >12.5%). Using Cox analysis, TLAEF and contractile, reservoir, and conduit strain were univariate predictors of time to event. After multivariate analysis, TLAEF (hazard ratio, 2.59; P = .001), reservoir strain (hazard ratio, 3.06; P < .001), and contractile strain (hazard ratio, 2.01; P = .022) remained independently associated with events, but conduit strain did not. Using Kaplan-Meier curves, event-free survival was considerably improved in patients with values above the derived thresholds (TLAEF: 1-year survival, 78 ± 5% vs 28 ± 8%; 3-year survival, 68 ± 6% vs 13 ± 5%; P < .001 for both; reservoir strain: 1-year survival, 79 ± 5% vs 29 ± 7%; 3-year survival, 67 ± 6% vs 15 ± 6%; P < .001 for both; contractile strain: 1-year survival, 80 ± 5% vs 41 ± 7%; 3-year survival, 69 ± 6% vs 24 ± 6%; P < .001 for both). CONCLUSION: LA function is independently associated with surgery-free survival in patients with mitral valve prolapse and moderate to severe mitral regurgitation. Quantitative assessment of LA function may have clinical utility in guiding early surgical intervention in these patients

    The Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey II: The First Four Epochs

    Get PDF
    We report on the variability of 443 flat spectrum, compact radio sources monitored using the VLA for 3 days in 4 epochs at ~ 4 month intervals at 5 GHz as part of the Micro-Arcsecond Scintillation-Induced Variability (MASIV) survey. Over half of these sources exhibited 2-10% rms variations on timescales over 2 days. We analyzed the variations by two independent methods, and find that the rms variability amplitudes of the sources correlate with the emission measure in the ionized Interstellar Medium along their respective lines of sight. We thus link the variations with interstellar scintillation of components of these sources, with some (unknown) fraction of the total flux density contained within a compact region of angular diameter in the range 10-50 micro-arcseconds. We also find that the variations decrease for high mean flux density sources and, most importantly, for high redshift sources. The decrease in variability is probably due either to an increase in the apparent diameter of the source, or a decrease in the flux density of the compact fraction beyond z ~ 2. Here we present a statistical analysis of these results, and a future paper will the discuss the cosmological implications in detail.Comment: 62 pages, 13 figures. Accepted for publication in the Astrophysical Journa

    Unusual Flaring Activity in the Blazar PKS 1424-418 during 2008-2011

    Full text link
    Context. Blazars are a subset of active galactic nuclei (AGN) with jets that are oriented along our line of sight. Variability and spectral energy distribution (SED) studies are crucial tools for understanding the physical processes responsible for observed AGN emission. Aims. We report peculiar behaviour in the bright gamma-ray blazar PKS 1424-418 and use its strong variability to reveal information about the particle acceleration and interactions in the jet. Methods. Correlation analysis of the extensive optical coverage by the ATOM telescope and nearly continuous gamma-ray coverage by the Fermi Large Area Telescope is combined with broadband, time-dependent modeling of the SED incorporating supplemental information from radio and X-ray observations of this blazar. Results. We analyse in detail four bright phases at optical-GeV energies. These flares of PKS 1424-418 show high correlation between these energy ranges, with the exception of one large optical flare that coincides with relatively low gamma-ray activity. Although the optical/gamma-ray behaviour of PKS 1424-418 shows variety, the multiwavelength modeling indicates that these differences can largely be explained by changes in the flux and energy spectrum of the electrons in the jet that are radiating. We find that for all flares the SED is adequately represented by a leptonic model that includes inverse Compton emission from external radiation fields with similar parameters. Conclusions. Detailed studies of individual blazars like PKS 1424-418 during periods of enhanced activity in different wavebands are helping us identify underlying patterns in the physical parameters in this class of AGN.Comment: accepted for publication in A&

    Heasim and Skyback Simulation Tools and Their Application to the Hitomi Mission

    Get PDF
    We present an introduction to the heasim multimission observation and skyback background, high-energy pseudo Monte Carlo astrophysical simulation tools. Heasim may be used to accurately and efficiently construct flexible image transport system (FITS) event files for simple or composite sources with a wide range of standard and user-defined spatial, spectral, and temporal characteristics. Skyback is designed to enable users to assess the impact of background discrete and diffuse emission on prospective observations, and skyback output may be directly input into heasim. We present a brief overview of heasim and skyback input, algorithms, usage, and output. We also introduce the sxsbranch tool that computes Hitomi soft X-ray spectrometer resolution grade branching ratios, emphasizing its application to simulations. We include several examples of particular relevance to the Hitomi mission

    Defect ferromagnetism induced by lower valence cation doping:Li-doped SnO(2)nanoparticles

    Get PDF
    To explore the role of Li in establishing room-temperature ferromagnetism in SnO2, the structural, electronic and magnetic properties of Li-doped SnO(2)compounds were studied for different size regimes, from nanoparticles to bulk crystals. Li-doped nanoparticles show ferromagnetic ordering plus a paramagnetic contribution for particle sizes in the range of 16-51 nm, while pure SnO(2)and Li-doped compounds below and above this particular size range are diamagnetic. The magnetic moment is larger for compositions where the Li substitutes for Sn than for compositions where Li prevalently occupies interstitial sites. The observed ferromagnetic ordering in Li-doped SnO(2)nanoparticles is mainly due to the holes created when Li substitutes at a Sn site. Conversely, Li acts as an electron donor and electrons from Li may combine with holes to decrease ferromagnetism when lithium mainly occupies interstitial sites in the SnO(2)lattice
    corecore