2,730 research outputs found

    New Preshower detector for DIRAC Experiment

    Full text link
    The Preshower (PSh) detector is a component of the DIRAC setup. It is designed to improve rejection efficiency of e-e+ pairs background in the {\pi}{\pi} and K{\pi} pair measurement. To increase the overall efficiency, a new two-layer structure scintillator Preshower detector has been realized in the region where the Nitrogen Cherenkov detector has been shortened to introduce new detectors. The new Preshower-Cherenkov combination ensures the electron rejection efficiency better than 99.9% in momentum region 1-7 GeV/c.Comment: to be published in NIM

    Targeting T cells to treat atherosclerosis: Odyssey from bench to bedside

    Get PDF
    More than 150 years from the initial description of inflammation in atherosclerotic plaques, randomized clinical trials to test anti-inflammatory therapies in atherosclerosis have recently been initiated. Lymphocytes and macrophages are main participants in the inflammatory response in atherosclerosis. T lymphocytes operate mainly by exerting strong influences on the function of many cells in the immune system and beyond, and co-ordinating their interactions. Importantly, T lymphocytes are not a homogenous population, but include several subsets with specialized functions that can either promote or suppress inflammation. The interactions between these T-lymphocyte subsets have critical consequences on the course and outcome of inflammation. The complexity of the inflammatory response in atherosclerosis poses significant challenges on translating experimental findings into clinical therapies and makes the journey from bench to bedside an arduous one. Here, we summarize recent advances on the role of CD4 + T cells in the inflammatory process in atherosclerosis and discuss potential therapies to modulate these lymphocytes that may provide future breakthroughs in the treatment of atherosclerosis

    Spectral fluctuations of tridiagonal random matrices from the beta-Hermite ensemble

    Full text link
    A time series delta(n), the fluctuation of the nth unfolded eigenvalue was recently characterized for the classical Gaussian ensembles of NxN random matrices (GOE, GUE, GSE). It is investigated here for the beta-Hermite ensemble as a function of beta (zero or positive) by Monte Carlo simulations. The fluctuation of delta(n) and the autocorrelation function vary logarithmically with n for any beta>0 (1<<n<<N). The simple logarithmic behavior reported for the higher-order moments of delta(n) for the GOE (beta=1) and the GUE (beta=2) is valid for any positive beta and is accounted for by Gaussian distributions whose variances depend linearly on ln(n). The 1/f noise previously demonstrated for delta(n) series of the three Gaussian ensembles, is characterized by wavelet analysis both as a function of beta and of N. When beta decreases from 1 to 0, for a given and large enough N, the evolution from a 1/f noise at beta=1 to a 1/f^2 noise at beta=0 is heterogeneous with a ~1/f^2 noise at the finest scales and a ~1/f noise at the coarsest ones. The range of scales in which a ~1/f^2 noise predominates grows progressively when beta decreases. Asymptotically, a 1/f^2 noise is found for beta=0 while a 1/f noise is the rule for beta positive.Comment: 35 pages, 10 figures, corresponding author: G. Le Cae

    Cell-Type Specific Changes in Glial Morphology and Glucocorticoid Expression During Stress and Aging in the Medial Prefrontal Cortex.

    Get PDF
    Repeated exposure to stressors is known to produce large-scale remodeling of neurons within the prefrontal cortex (PFC). Recent work suggests stress-related forms of structural plasticity can interact with aging to drive distinct patterns of pyramidal cell morphological changes. However, little is known about how other cellular components within PFC might be affected by these challenges. Here, we examined the effects of stress exposure and aging on medial prefrontal cortical glial subpopulations. Interestingly, we found no changes in glial morphology with stress exposure but a profound morphological change with aging. Furthermore, we found an upregulation of non-nuclear glucocorticoid receptors (GR) with aging, while nuclear levels remained largely unaffected. Both changes are selective for microglia, with no stress or aging effect found in astrocytes. Lastly, we show that the changes found within microglia inversely correlated with the density of dendritic spines on layer III pyramidal cells. These findings suggest microglia play a selective role in synaptic health within the aging brain

    Rovibrationally resolved photodissociation of HeH+

    Full text link
    Accurate photodissociation cross sections have been obtained for the A-X electronic transition of HeH+ using ab initio potential curves and dipole transition moments. Partial cross sections have been evaluated for all rotational transitions from the vibrational levels v"=0-11 and over the entire accessible wavelength range 100-1129 Angstrom. Assuming a Boltzmann distribution of the rovibrational levels of the X state, photodissociation cross sections are presented for temperatures between 500 and 12,000 K. A similar set of calculations was performed for the pure rovibrational photodissociation in the X-X electronic ground state, but covering photon wavelengths into the far infrared. Applications of the cross sections to the destruction of HeH+in the early Universe and in UV-irradiated environments such as primordial halos and protoplanetary disks are briefly discussed

    Faithful and Efficient Explanations for Neural Networks via Neural Tangent Kernel Surrogate Models

    Full text link
    A recent trend in explainable AI research has focused on surrogate modeling, where neural networks are approximated as simpler ML algorithms such as kernel machines. A second trend has been to utilize kernel functions in various explain-by-example or data attribution tasks. In this work, we combine these two trends to analyze approximate empirical neural tangent kernels (eNTK) for data attribution. Approximation is critical for eNTK analysis due to the high computational cost to compute the eNTK. We define new approximate eNTK and perform novel analysis on how well the resulting kernel machine surrogate models correlate with the underlying neural network. We introduce two new random projection variants of approximate eNTK which allow users to tune the time and memory complexity of their calculation. We conclude that kernel machines using approximate neural tangent kernel as the kernel function are effective surrogate models, with the introduced trace NTK the most consistent performer. Open source software allowing users to efficiently calculate kernel functions in the PyTorch framework is available (https://github.com/pnnl/projection\_ntk).Comment: 9 pages, 2 figures, 3 tables Updated 3/11/2024 various additions/clarifications after ICLR review. Accepted as a Spotlight paper at ICLR 202

    Fragmentation Properties of Three-membered Ring Heterocyclic Molecules by Partial Ion Yield Spectroscopy: C2H4O and C2H4S

    Full text link
    We investigated the photofragmentation properties of two three-membered ring heterocyclic molecules, C2H4O and C2H4S, by total and partial ion yield spectroscopy. Positive and negative ions have been collected as a function of photon energy around the C 1s and O 1s ionization thresholds in C2H4O, and around the S 2p and C 1s thresholds in C2H4S. We underline similarities and differences between these two analogous systems. We present a new assignment of the spectral features around the C K-edge and the sulfur L2,3 edges in C2H4S. In both systems, we observe high fragmentation efficiency leading to positive and negative ions when exciting these molecules at resonances involving core-to-Rydberg transitions. The system, with one electron in an orbital far from the ionic core, relaxes preferentially by spectator Auger decay, and the resulting singly charged ion with two valence holes and one electron in an outer diffuse orbital can remain in excited states more susceptible to dissociation. A state-selective fragmentation pattern is analyzed in C2H4S which leads to direct production of S2+ following the decay of virtual-orbital excitations to final states above the double-ionization threshold

    Asymptotic forms for hard and soft edge general β\beta conditional gap probabilities

    Full text link
    An infinite log-gas formalism, due to Dyson, and independently Fogler and Shklovskii, is applied to the computation of conditioned gap probabilities at the hard and soft edges of random matrix β\beta-ensembles. The conditioning is that there are nn eigenvalues in the gap, with ntn \ll |t|, tt denoting the end point of the gap. It is found that the entropy term in the formalism must be replaced by a term involving the potential drop to obtain results consistent with known asymptotic expansions in the case n=0n=0. With this modification made for general nn, the derived expansions - which are for the logarithm of the gap probabilities - are conjectured to be correct up to and including terms O(logt)(\log|t|). They are shown to satisfy various consistency conditions, including an asymptotic duality formula relating β\beta to 4/β4/\beta.Comment: Replaces v2 which contains typographical errors arising from a previous unpublished draf

    Freezing Transition in Decaying Burgers Turbulence and Random Matrix Dualities

    Full text link
    We reveal a phase transition with decreasing viscosity ν\nu at \nu=\nu_c>0 in one-dimensional decaying Burgers turbulence with a power-law correlated random profile of Gaussian-distributed initial velocities \sim|x-x'|^{-2}. The low-viscosity phase exhibits non-Gaussian one-point probability density of velocities, continuously dependent on \nu, reflecting a spontaneous one step replica symmetry breaking (RSB) in the associated statistical mechanics problem. We obtain the low orders cumulants analytically. Our results, which are checked numerically, are based on combining insights in the mechanism of the freezing transition in random logarithmic potentials with an extension of duality relations discovered recently in Random Matrix Theory. They are essentially non mean-field in nature as also demonstrated by the shock size distribution computed numerically and different from the short range correlated Kida model, itself well described by a mean field one step RSB ansatz. We also provide some insights for the finite viscosity behaviour of velocities in the latter model.Comment: Published version, essentially restructured & misprints corrected. 6 pages, 5 figure
    corecore