537 research outputs found
Dual Averaging Method for Online Graph-structured Sparsity
Online learning algorithms update models via one sample per iteration, thus
efficient to process large-scale datasets and useful to detect malicious events
for social benefits, such as disease outbreak and traffic congestion on the
fly. However, existing algorithms for graph-structured models focused on the
offline setting and the least square loss, incapable for online setting, while
methods designed for online setting cannot be directly applied to the problem
of complex (usually non-convex) graph-structured sparsity model. To address
these limitations, in this paper we propose a new algorithm for
graph-structured sparsity constraint problems under online setting, which we
call \textsc{GraphDA}. The key part in \textsc{GraphDA} is to project both
averaging gradient (in dual space) and primal variables (in primal space) onto
lower dimensional subspaces, thus capturing the graph-structured sparsity
effectively. Furthermore, the objective functions assumed here are generally
convex so as to handle different losses for online learning settings. To the
best of our knowledge, \textsc{GraphDA} is the first online learning algorithm
for graph-structure constrained optimization problems. To validate our method,
we conduct extensive experiments on both benchmark graph and real-world graph
datasets. Our experiment results show that, compared to other baseline methods,
\textsc{GraphDA} not only improves classification performance, but also
successfully captures graph-structured features more effectively, hence
stronger interpretability.Comment: 11 pages, 14 figure
Fewer Flops at the Top: Accuracy, Diversity, and Regularization in Two-Class Collaborative Filtering
In most existing recommender systems, implicit or explicit interactions are treated as positive links and all unknown interactions are treated as negative links. The goal is to suggest new links that will be perceived as positive by users. However, as signed social networks and newer content services become common, it is important to distinguish between positive and negative preferences. Even in existing applications, the cost of a negative recommendation could be high when people are looking for new jobs, friends, or places to live.
In this work, we develop novel probabilistic latent factor models to recommend positive links and compare them with existing methods on five different openly available datasets. Our models are able to produce better ranking lists and are effective in the task of ranking positive links at the top, with fewer negative links (flops). Moreover, we find that modeling signed social networks and user preferences this way has the advantage of increasing the diversity of recommendations. We also investigate the effect of regularization on the quality of recommendations, a matter that has not received enough attention in the literature. We find that regularization parameter heavily affects the quality of recommendations in terms of both accuracy and diversity
Simple Asymmetric Exclusion Model and Lattice Paths: Bijections and Involutions
We study the combinatorics of the change of basis of three representations of
the stationary state algebra of the two parameter simple asymmetric exclusion
process. Each of the representations considered correspond to a different set
of weighted lattice paths which, when summed over, give the stationary state
probability distribution. We show that all three sets of paths are
combinatorially related via sequences of bijections and sign reversing
involutions.Comment: 28 page
Recurrent Latent Variable Networks for Session-Based Recommendation
In this work, we attempt to ameliorate the impact of data sparsity in the
context of session-based recommendation. Specifically, we seek to devise a
machine learning mechanism capable of extracting subtle and complex underlying
temporal dynamics in the observed session data, so as to inform the
recommendation algorithm. To this end, we improve upon systems that utilize
deep learning techniques with recurrently connected units; we do so by adopting
concepts from the field of Bayesian statistics, namely variational inference.
Our proposed approach consists in treating the network recurrent units as
stochastic latent variables with a prior distribution imposed over them. On
this basis, we proceed to infer corresponding posteriors; these can be used for
prediction and recommendation generation, in a way that accounts for the
uncertainty in the available sparse training data. To allow for our approach to
easily scale to large real-world datasets, we perform inference under an
approximate amortized variational inference (AVI) setup, whereby the learned
posteriors are parameterized via (conventional) neural networks. We perform an
extensive experimental evaluation of our approach using challenging benchmark
datasets, and illustrate its superiority over existing state-of-the-art
techniques
PlaNet - Photo Geolocation with Convolutional Neural Networks
Is it possible to build a system to determine the location where a photo was
taken using just its pixels? In general, the problem seems exceptionally
difficult: it is trivial to construct situations where no location can be
inferred. Yet images often contain informative cues such as landmarks, weather
patterns, vegetation, road markings, and architectural details, which in
combination may allow one to determine an approximate location and occasionally
an exact location. Websites such as GeoGuessr and View from your Window suggest
that humans are relatively good at integrating these cues to geolocate images,
especially en-masse. In computer vision, the photo geolocation problem is
usually approached using image retrieval methods. In contrast, we pose the
problem as one of classification by subdividing the surface of the earth into
thousands of multi-scale geographic cells, and train a deep network using
millions of geotagged images. While previous approaches only recognize
landmarks or perform approximate matching using global image descriptors, our
model is able to use and integrate multiple visible cues. We show that the
resulting model, called PlaNet, outperforms previous approaches and even
attains superhuman levels of accuracy in some cases. Moreover, we extend our
model to photo albums by combining it with a long short-term memory (LSTM)
architecture. By learning to exploit temporal coherence to geolocate uncertain
photos, we demonstrate that this model achieves a 50% performance improvement
over the single-image model
Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models
Motivated by a real-life problem of sharing social network data that contain
sensitive personal information, we propose a novel approach to release and
analyze synthetic graphs in order to protect privacy of individual
relationships captured by the social network while maintaining the validity of
statistical results. A case study using a version of the Enron e-mail corpus
dataset demonstrates the application and usefulness of the proposed techniques
in solving the challenging problem of maintaining privacy \emph{and} supporting
open access to network data to ensure reproducibility of existing studies and
discovering new scientific insights that can be obtained by analyzing such
data. We use a simple yet effective randomized response mechanism to generate
synthetic networks under -edge differential privacy, and then use
likelihood based inference for missing data and Markov chain Monte Carlo
techniques to fit exponential-family random graph models to the generated
synthetic networks.Comment: Updated, 39 page
Deep Markov Random Field for Image Modeling
Markov Random Fields (MRFs), a formulation widely used in generative image
modeling, have long been plagued by the lack of expressive power. This issue is
primarily due to the fact that conventional MRFs formulations tend to use
simplistic factors to capture local patterns. In this paper, we move beyond
such limitations, and propose a novel MRF model that uses fully-connected
neurons to express the complex interactions among pixels. Through theoretical
analysis, we reveal an inherent connection between this model and recurrent
neural networks, and thereon derive an approximated feed-forward network that
couples multiple RNNs along opposite directions. This formulation combines the
expressive power of deep neural networks and the cyclic dependency structure of
MRF in a unified model, bringing the modeling capability to a new level. The
feed-forward approximation also allows it to be efficiently learned from data.
Experimental results on a variety of low-level vision tasks show notable
improvement over state-of-the-arts.Comment: Accepted at ECCV 201
Differentially Private Model Selection with Penalized and Constrained Likelihood
In statistical disclosure control, the goal of data analysis is twofold: The
released information must provide accurate and useful statistics about the
underlying population of interest, while minimizing the potential for an
individual record to be identified. In recent years, the notion of differential
privacy has received much attention in theoretical computer science, machine
learning, and statistics. It provides a rigorous and strong notion of
protection for individuals' sensitive information. A fundamental question is
how to incorporate differential privacy into traditional statistical inference
procedures. In this paper we study model selection in multivariate linear
regression under the constraint of differential privacy. We show that model
selection procedures based on penalized least squares or likelihood can be made
differentially private by a combination of regularization and randomization,
and propose two algorithms to do so. We show that our private procedures are
consistent under essentially the same conditions as the corresponding
non-private procedures. We also find that under differential privacy, the
procedure becomes more sensitive to the tuning parameters. We illustrate and
evaluate our method using simulation studies and two real data examples
Discretization of variational regularization in Banach spaces
Consider a nonlinear ill-posed operator equation where is
defined on a Banach space . In general, for solving this equation
numerically, a finite dimensional approximation of and an approximation of
are required. Moreover, in general the given data \yd of are noisy.
In this paper we analyze finite dimensional variational regularization, which
takes into account operator approximations and noisy data: We show
(semi-)convergence of the regularized solution of the finite dimensional
problems and establish convergence rates in terms of Bregman distances under
appropriate sourcewise representation of a solution of the equation. The more
involved case of regularization in nonseparable Banach spaces is discussed in
detail. In particular we consider the space of finite total variation
functions, the space of functions of finite bounded deformation, and the
--space
Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas)
Aerosol mass and the absorbing fraction are important variables, needed to constrain the role of atmospheric particles in the Earth radiation budget, both directly and indirectly through CCN activation. In particular, their monitoring in remote areas and mountain sites is essential for determining source regions, elucidating the mechanisms of long range transport of anthropogenic pollutants, and validating regional and global models. Since March 2006, aerosol mass and black carbon concentration have been monitored at the Nepal Climate Observatory-Pyramid, a permanent high-altitude research station located in the Khumbu valley at 5079 m a.s.l. below Mt. Everest. The first two-year averages of PM<sub>1</sub> and PM<sub>1−10</sub> mass were 1.94 μg m<sup>−3</sup> and 1.88 μg m<sup>−3</sup>, with standard deviations of 3.90 μg m<sup>−3</sup> and 4.45 μg m<sup>−3</sup>, respectively, while the black carbon concentration average is 160.5 ng m<sup>−3</sup>, with a standard deviation of 296.1 ng m<sup>−3</sup>. Both aerosol mass and black carbon show well defined annual cycles, with a maximum during the pre-monsoon season and a minimum during the monsoon. They also display a typical diurnal cycle during all the seasons, with the lowest particle concentration recorded during the night, and a considerable increase during the afternoon, revealing the major role played by thermal winds in influencing the behaviour of atmospheric compounds over the high Himalayas. The aerosol concentration is subject to high variability: in fact, as well as frequent "background conditions" (55% of the time) when BC concentrations are mainly below 100 ng m<sup>−3</sup>, concentrations up to 5 μg m<sup>−3</sup> are reached during some episodes (a few days every year) in the pre-monsoon seasons. The variability of PM and BC is the result of both short-term changes due to thermal wind development in the valley, and long-range transport/synoptic circulation. At NCO-P, higher concentrations of PM<sub>1</sub> and BC are mostly associated with regional circulation and westerly air masses from the Middle East, while the strongest contributions of mineral dust arrive from the Middle East and regional circulation, with a special contribution from North Africa and South-West Arabian Peninsula in post-monsoon and winter season
- …
