1,148 research outputs found

    The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high energy phosphate metabolism

    Get PDF
    Hypoxia-inducible factor (HIF) appears to function as a global master regulator of cellular and systemic responses to hypoxia. HIF-pathway manipulation is of therapeutic interest, however global, systemic upregulation of HIF may have as yet unknown effects on multiple processes. We utilized a mouse model of Chuvash polycythemia (CP), a rare genetic disorder which modestly increases expression of HIF target genes in normoxia, to understand what these effects might be within the heart. An integrated in and ex vivo approach was employed. In comparison to wild-type controls, CP mice had evidence (using in vivo MRI) of pulmonary hypertension, right ventricular hypertrophy, and increased left ventricular ejection fraction. Glycolytic flux (measured using 3H glucose) in the isolated, contracting, perfused CP heart was 1.8-fold higher. Net lactate efflux was 1.5-fold higher. Furthermore, in vivo 13C magnetic resonance spectroscopy (MRS) of hyperpolarized 13C1 pyruvate revealed a 2-fold increase in real-time flux through lactate dehydrogenase in the CP hearts, and a 1.6-fold increase through pyruvate dehydrogenase. 31P MRS of perfused CP hearts under increased workload (isoproterenol infusion) demonstrated increased depletion of phosphocreatine relative to ATP. Intriguingly, no changes in cardiac gene expression were detected. In summary, a modest systemic dysregulation of the HIF pathway resulted in clear alterations in cardiac metabolism and energetics. However, in contrast to studies generating high HIF levels within the heart, the CP mice showed neither the predicted changes in gene expression nor any degree of LV impairment. We conclude that the effects of manipulating HIF on the heart are dose-dependent. New and noteworthy This is the first integrative metabolic and functional study of the effects of modest HIF manipulation within the heart. Of particular note, the combination (and correlation) of perfused heart metabolic flux measurements with the new technique of real-time in vivo MR spectroscopy using hyperpolarized pyruvate is a novel development

    Grassmannian flows and applications to nonlinear partial differential equations

    Full text link
    We show how solutions to a large class of partial differential equations with nonlocal Riccati-type nonlinearities can be generated from the corresponding linearized equations, from arbitrary initial data. It is well known that evolutionary matrix Riccati equations can be generated by projecting linear evolutionary flows on a Stiefel manifold onto a coordinate chart of the underlying Grassmann manifold. Our method relies on extending this idea to the infinite dimensional case. The key is an integral equation analogous to the Marchenko equation in integrable systems, that represents the coodinate chart map. We show explicitly how to generate such solutions to scalar partial differential equations of arbitrary order with nonlocal quadratic nonlinearities using our approach. We provide numerical simulations that demonstrate the generation of solutions to Fisher--Kolmogorov--Petrovskii--Piskunov equations with nonlocal nonlinearities. We also indicate how the method might extend to more general classes of nonlinear partial differential systems.Comment: 26 pages, 2 figure

    The lncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation

    Get PDF
    The expression of the long noncoding RNA HOTAIR (HOX Transcript Antisense Intergenic RNA) is largely deregulated in epithelial cancers and positively correlates with poor prognosis and progression of hepatocellular carcinoma and gastrointestinal cancers. Furthermore, functional studies revealed a pivotal role for HOTAIR in the epithelial-to-mesenchymal transition, as this RNA is causal for the repressive activity of the master factor SNAIL on epithelial genes. Despite the proven oncogenic role of HOTAIR, its transcriptional regulation is still poorly understood. Here hepatocyte nuclear factor 4-α (HNF4α), as inducer of epithelial differentiation, was demonstrated to directly repress HOTAIR transcription in the mesenchymal-to epithelial transition. Mechanistically, HNF4α was found to cause the release of a chromatin loop on HOTAIR regulatory elements thus exerting an enhancer-blocking activity

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Spontaneous vortices in the formation of Bose-Einstein condensates

    Full text link
    Phase transitions are ubiquitous in nature, ranging from protein folding and denaturisation, to the superconductor-insulator quantum phase transition, to the decoupling of forces in the early universe. Remarkably, phase transitions can be arranged into universality classes, where systems having unrelated microscopic physics exhibit identical scaling behaviour near the critical point. Here we present an experimental and theoretical study of the Bose-Einstein condensation phase transition of an atomic gas, focusing on one prominent universal element of phase transition dynamics: the spontaneous formation of topological defects during a quench through the transition. While the microscopic dynamics of defect formation in phase transitions are generally difficult to investigate, particularly for superfluid phase transitions, Bose-Einstein condensates (BECs) offer unique experimental and theoretical opportunities for probing such details. Although spontaneously formed vortices in the condensation transition have been previously predicted to occur, our results encompass the first experimental observations and statistical characterisation of spontaneous vortex formation in the condensation transition. Using microscopic theories that incorporate atomic interactions and quantum and thermal fluctuations of a finite-temperature Bose gas, we simulate condensation and observe vortex formation in close quantitative agreement with our experimental results. Our studies provide further understanding of the development of coherence in superfluids, and may allow for direct investigation of universal phase-transition dynamics.Comment: 14 pages, 6 figures. Accepted for publication in Nature. Supplementary movie files are available at http://www.physics.uq.edu.au/people/mdavis/spontaneous_vortice

    Interventions for families affected by HIV

    Get PDF
    Family-based interventions are efficacious for human immunodeficiency virus (HIV) detection, prevention, and care, but they are not broadly diffused. Understanding intervention adaptation and translation processes can support evidence-based intervention (EBI) diffusion processes. This paper provides a narrative review of a series of EBI for families affected by HIV (FAH) that were adapted across five randomized controlled trials in the US, Thailand, and South Africa over 15 years. The FAH interventions targeted parents living with HIV and their children or caregiver supports. Parents with HIV were primarily mothers infected through sexual transmission. The EBIs for FAH are reviewed with attention to commonalities and variations in risk environments and intervention features. Frameworks for common and robust intervention functions, principles, practice elements, and delivery processes are utilized to highlight commonalities and adaptations for each location, time period, and intervention delivery settings. Health care, housing, food, and financial security vary dramatically in each risk environment. Yet, all FAH face common health, mental health, transmission, and relationship challenges. The EBIs efficaciously addressed these common challenges and were adapted across contexts with fidelity to robust intervention principles, processes, factors, and practices. Intervention adaptation teams have a series of structural decision points: mainstreaming HIV with other local health priorities or not; selecting an optimal delivery site (clinics, homes, community centers); and how to translate intervention protocols to local contexts and cultures. Replication of interventions with fidelity must occur at the level of standardized functions and robust principles, processes, and practices, not manualized protocols. Adopting a continuous quality improvement paradigm will enhance rapid and global diffusion of EBI for FAH

    Nonlinear vortex light beams supported and stabilized by dissipation

    Full text link
    We describe nonlinear Bessel vortex beams as localized and stationary solutions with embedded vorticity to the nonlinear Schr\"odinger equation with a dissipative term that accounts for the multi-photon absorption processes taking place at high enough powers in common optical media. In these beams, power and orbital angular momentum are permanently transferred to matter in the inner, nonlinear rings, at the same time that they are refueled by spiral inward currents of energy and angular momentum coming from the outer linear rings, acting as an intrinsic reservoir. Unlike vortex solitons and dissipative vortex solitons, the existence of these vortex beams does not critically depend on the precise form of the dispersive nonlinearities, as Kerr self-focusing or self-defocusing, and do not require a balancing gain. They have been shown to play a prominent role in "tubular" filamentation experiments with powerful, vortex-carrying Bessel beams, where they act as attractors in the beam propagation dynamics. Nonlinear Bessel vortex beams provide indeed a new solution to the problem of the stable propagation of ring-shaped vortex light beams in homogeneous self-focusing Kerr media. A stability analysis demonstrates that there exist nonlinear Bessel vortex beams with single or multiple vorticity that are stable against azimuthal breakup and collapse, and that the mechanism that renders these vortexes stable is dissipation. The stability properties of nonlinear Bessel vortex beams explain the experimental observations in the tubular filamentation experiments.Comment: Chapter of boo

    Stabilising touch interactions in cockpits, aerospace, and vibrating environments

    Get PDF
    © Springer International Publishing AG, part of Springer Nature 2018. Incorporating touch screen interaction into cockpit flight systems is increasingly gaining traction given its several potential advantages to design as well as usability to pilots. However, perturbations to the user input are prevalent in such environments due to vibrations, turbulence and high accelerations. This poses particular challenges for interacting with displays in the cockpit, for example, accidental activation during turbulence or high levels of distraction from the primary task of airplane control to accomplish selection tasks. On the other hand, predictive displays have emerged as a solution to minimize the effort as well as cognitive, visual and physical workload associated with using in-vehicle displays under perturbations, induced by road and driving conditions. This technology employs gesture tracking in 3D and potentially eye-gaze as well as other sensory data to substantially facilitate the acquisition (pointing and selection) of an interface component by predicting the item the user intents to select on the display, early in the movements towards the screen. A key aspect is utilising principled Bayesian modelling to incorporate and treat the present perturbation, thus, it is a software-based solution that showed promising results when applied to automotive applications. This paper explores the potential of applying this technology to applications in aerospace and vibrating environments in general and presents design recommendations for such an approach to enhance interactions accuracy as well as safety
    • …
    corecore