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Abstract. Incorporating touch screen interaction into cockpit flight systems is 

increasingly gaining traction given its several potential advantages to design as 

well as usability to pilots. However, perturbations to the user input are prevalent 

in such environments due to vibrations, turbulence and high accelerations. This 

poses particular challenges for interacting with displays in the cockpit, for exam-

ple, accidental activation during turbulence or high levels of distraction from the 

primary task of airplane control to accomplish selection tasks. On the other hand, 

predictive displays have emerged as a solution to minimize the effort as well as 

cognitive, visual and physical workload associated with using in-vehicle displays 

under perturbations, induced by road and driving conditions. This technology 

employs gesture tracking in 3D and potentially eye-gaze as well as other sensory 

data to substantially facilitate the acquisition (pointing and selection) of an inter-

face component by predicting the item the user intents to select on the display, 

early in the movements towards the screen. A key aspect is utilising principled 

Bayesian modelling to incorporate and treat the present perturbation, thus, it is a 

software-based solution that showed promising results when applied to automo-

tive applications. This paper explores the potential of applying this technology to 

applications in aerospace and vibrating environments in general and presents de-

sign recommendations for such an approach to enhance interactions accuracy as 

well as safety. 
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1 Introduction  

In the development of aviation cockpit interfaces, a key step has been the movement 

from conventional mechanical controls (such as joysticks, trackballs, dials, switches, 

levers, and buttons [1]), and analogue displays to electronic “glass cockpits”. This fa-

cilitated the introduction of touch screens into cockpits. They bring several advantages 

to the manufactures as well as operators (e.g. pilots) due to their ability to:  

1) offer additional design flexibilities by combining the display-input-feedback func-

tionalities in one module, simplifying complex dial arrays and providing better visibil-

ity, salience and flexibility of display of critical flight information,  

2) promote intuitive interactions via free hand pointing gestures,  
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3) incorporate large quantities of information associated with modern aviation devel-

opments (e.g. weather radar, collision avoidance, route control, ALS, autopilot and nu-

merous information related to engine parameters and other on-board systems); amongst 

others this led to the reductions of space required for the cockpit bulkhead as well as 

control area, and 

4) being easily updatable via reconfiguring the Graphical User Interfaces (GUIs) in lieu 

of incurring the prohibitive overheads of repurposing-rewiring hardware panels of me-

chanical controls. 

Thereby, touch screens use in aerospace applications is gaining traction [2-8] and can 

be viewed as the predominant design choice for modern cockpit HMI, e.g. F-35 Joint 

Strike Fighter has a full-panel-width 20 × 8 inches touch screen.  

However, air turbulence, accelerations (e.g. constant high G-force) and possibly vi-

brations due to taxiway roughness can significantly affect the ability of an operator to 

accomplish on-display target acquisition (pointing and selection) tasks via pointing ges-

tures [3,4,8,9]. This is contrary to classical physical controls of non-touchscreen dis-

plays (e.g. joystick, rotary, etc.), which offer mechanical stabilisation of the pointing 

action, especially that touch screen devices as input technology cannot present discreet 

button regions and can only be activated by contact with the screen. Accordingly, per-

turbations could result in erroneous user input and/or unintentional (false) selections. 

Attempts to rectify such incorrect selections, e.g. by repeating the acquisition task(s), 

can tie up further of the operator’s attention, which can be otherwise available for more 

essential tasks such as controlling the jet and monitoring its on-board systems. There-

fore, interacting with displays under perturbations (e.g. turbulence and vibrations) via 

pointing gestures can be highly effortful-distracting and a key challenge is to develop 

solutions to notably improve the usability and performance (e.g. accuracy) of touch 

interactions in aerospace and general vibrating environments [3-9].  

On the other hand, touch screens are an integrated part of the modern vehicle envi-

ronment with several established benefits, similar to those of listed above [10, 11].  

However, undertaking a free hand pointing gesture to acquire a target on the display, 

e.g. a GUI icon, requires devoting a considerable amount of attention (visual, cognitive 

and physical) that would be instead dedicated to the primary task of driving [12], with 

potential safety implications [13]. Due to road and driving conditions, the user pointing 

gesture can be subject to perturbations (e.g. vibrations and lateral accelerations) leading 

to substantial degradation in the touch accuracy and interaction performance [12, 14]. 

Therefore, the predictive touch technology [15, 16], which can infer, notably early in 

the free hand pointing gesture, the intended on-screen item has emerged as an effective 

solution that can simplify and expedite the selection task, even under perturbations. It 

can significantly improve the usability of in-car touch screens by reducing distractions 

and workload associated with interacting with them, under various road and driving 

conditions.  

In this paper, we first consider existing approaches to stabilising the user input in 

cockpits and then propose applying the predictive touch technology, originally devel-

oped for automotive applications, as well as statistical filtering techniques as in [16, 

17]. The aim is to substantially improve interactions accuracy as well as performance 

and usability of touch screens where perturbations (e.g. due to turbulence, vibrations 



and high accelerations) can be prevalent and carrying out the “secondary” tasks of in-

teracting with various in-cockpit controls can be highly demanding. Design considera-

tions and recommendations to best utilise the predictive display or touch technology 

are also presented. 

The remainder of this paper is organised as follows. In the next section, we consider 

existing work in Human-Computer Interaction (HCI); in particular that related to coun-

teracting the impact of perturbations on the user input (finger pointing) in cockpits. We 

then give a brief overview of the proposed predictive display technology and the 

adopted Bayesian framework, outlining the flexibilities of this formulation and its re-

quirements in Section 3. In Section 4, a few design recommendations are highlighted 

and finally conclusions are drawn in Section 5.  

2 Related Work and Desired Features 

2.1 Related Work 

With the proliferation of the increasingly ubiquitous touch screen technology in eve-

ryday use, target acquisition (pointing and selection) on a graphical user interface has 

become part of modern life and a frequent HCI task. The majority of modern software 

products now employ touch pads, touch screens and stylus entry systems to permit the 

user to input information in the wide varieties of formats necessitated by complex in-

ternet functionalities. For example, on screen keypads and keyboards, 2D mapping in-

formation, 2D drawing and art tools, 3D representations, as well as conventional screen 

buttons with standard selection paradigms such as select on mouse-up if within the but-

ton boundaries. Furthermore, a whole generation of new interaction techniques have 

been developed based on touch screen contact. This includes simple gestures with one 

finger and more recent multi-touch gesture displays that allow multiple finger contact 

for pinch or sweep gestures [5, 18]. Touch-based interfaces allow a finger or pointing 

device to be used as a mouse when in contact with the screen. These can be capacitive 

or resistive (or both) to allow for the use of gloves or use in wet environments. 

In the general HCI area, pointing (e.g. with a mouse cursor) reliability and accuracy 

is of a key importance for the design of effective GUI. This has triggered an immense 

interest in approaches that model pointing movements and assist the pointing task by 

reducing the cursor pointing time and improving its accuracy [19-26]. This can be 

achieved via pointing facilitation techniques, such as increasing the size of the target 

icon, altering its activation area, dragging the cursor closer to the target, etc. However, 

such strategies can be effectively applied only if the intended GUI item is known a 

priori [21-26]. Such studies focus on pointing via a mouse or mechanical-device in a 

2D set-up to select a GUI icon(s) and often consider able-bodied computer users in a 

stationary input situation and do not treat the impact of perturbations on the interactions.   

However, the user population is diverse and includes motion impaired, elderly and 

non-expert users.  Similar to users experiencing perturbations induced by environmen-

tal factors (e.g. due to road and driving conditions or using a touch screen whilst walk-

ing), the pointing-selection task can be challenging for users with a motion-visual im-

pairment [17, 26-30]. One area offering mitigation to these challenges is the design of 



integrated multimodal display and control technologies for ease of input and task com-

pletion [17, 27, 30]. Initially, in the domain of better design for elderly and impaired 

computer and TV users and in the form of extraordinary user interfaces [31, 32]. This 

approach assumes that any human user can be impaired (disabled) in their effectiveness 

by characteristics of their environment, the task, and the design of the user interface 

they are presented with [32].  

On the other hand, the problem of improving touch interactions in cockpits under 

perturbations is not well explored and innovations in this area are rather limited, unlike 

touch interactions with a portable devices (e.g. smartphones) under situational-induced 

impairments, for instance whilst walking [33, 34], or under health-induced impairment 

[26-32]. Existing approaches to combat the effects of present perturbations in cockpits 

can be divided into the following two general categories: 

1- Selection Strategy: utilise a suitable criteria to establish a trigger for the selection 

action of a GUI item from finger(s) touch, e.g. location of on-screen mouse up/down 

event, dwell time on a particular interface item, double tap, pressure applied during a  

touch action and others [35]. This is a well-known issue in the area of HCI and plethora 

of establish approaches; a selection strategy is an integrated part of most touch screen 

UI design (including those for displays with multi-touch capabilities). Nonetheless, un-

der perturbations such strategies cannot often effectively differentiate between inten-

tional and noise-induced accidental contacts with the display [36, 37].   

2- Braced touch interaction: allows users to mechanically stabilise selections by brac-

ing their fingers/hand/palm on or around the touch screen. For instance, a bezel edge 

can be used as in [8] or placing one or more of the hand fingers on the display and 

utilising eye-gaze fixations on the touched GUI item for ensuring an intentional touch 

as in [38]. They aim to enable accurate target selection (e.g. using an adequate selection 

strategy) during high levels of vibration, without impeding interaction performance 

when vibrations are absent. Such approach face the following key challenges include: 

a) discriminating intentional selection from braced contacts and b) limited interaction 

area which is often confined to the vicinity of the brace, especially for wide interactive 

displays, rendering various regions of the touch screen inaccessible. Mitigating the lat-

ter often requires moving the hand into awkward postures and/or uncomfortable selec-

tion maneuvers since one or more of the hand fingers are used for stabilisation. 

2.2 Desired Features 

In addition to improving the performance of the cockpit display in terms of accuracy 

(e.g. minimising erroneous selections) and given the constraints of a typical aerospace 

environment, a suitable solution should possess the following features: 

 Context dependent: it is expected to be applicable to a wide range of possible sce-

narios and cockpit control functionalities. It thus should effectively captures the dif-

ferent accuracy requirements under various conditions, e.g. safety critical control 

commands versus an interaction to obtain an update on a particular status. 

 Adaptable: the characteristics of the target acquisition task can be affected by many 

factors, including the operator’s physical ability, prior experience and level of ex-

perienced perturbations. The adopted solution should be also independent or easily 



adaptable to various GUI layout design and able to make use of any available priors 

on the user’s behaviour to refine its performance. 

 Reduces the interactions effort: the adopted solution should reduce the workload 

(manual, visual, cognitive) and inattention associated with accomplishing a selec-

tion task, unlike with the braced touch interaction. Thereby, it minimises distrac-

tions from other critical tasks such as jet control, on-board systems monitoring, etc. 

As illustrated below, the proposed predictive technology meets these requirements. 

3 Predictive Touch: Intent Inference with Hidden Markov Models 

The   predictive touch system block diagram is depicted in Figure 1. Its main aim is 

to predict the  icon the user intends to select, i.e. 𝒟𝐼, as early as possible in the free hand 

pointing gesture; it then facilitates-expedites the target selection albeit the present per-

turbations. This system utilises a gesture tracker and other sensory data in conjunction 

with probabilistic inference algorithms to determine the intended destination on the in-

teractive surface (e.g. touch screen). The prediction results for each of the GUI se-

lectable icons are subsequently used to decide on the intended endpoint and accordingly 

alter the GUI to assist the selection process. Next, we describe the main building blocks 

of a predictive touch system. 

 

 

Figure 1. System block diagram with a complete pointing finger-tip trajectory; 𝐦𝑘 is the 

finger-tip Cartesian 3D coordinates at time 𝑡𝑘 where 𝑡𝑘 > 𝑡1 [16]. 

3.1 Pointing Gesture Tracker 

It provides, in real-time, the pointing hand/finger(s) locations in 3D, for example at the 

discrete time instants 𝑡1, 𝑡2, . . . . , 𝑡𝑘. Several such pointing gesture trackers, which can 

accurately track, in real-time, a pointing gesture in 3D, have emerged lately. They are 

motivated by a desire to extend HCI beyond traditional keyboard input and mouse 

pointing. Whilst some trackers are vision-based [39], such as Microsoft Kinect, Leap 



Motion controller and Nimble UX, others are more amenable to being incorporated into 

wearables, e.g. [40-43], and thus can be more suitable for a cockpit setting. 

3.2 Bayesian Predictor and Statistical Filtering of Noise 

Let 𝔻 = {𝒟𝑖 ∶ 𝑖 = 1,2, . . 𝑁} be the set of 𝑁 selectable items on the display, for exam-

ple, GUI selectable icons. This key system module calculates the likelihood of each of 

the selectable interface items, i.e. 𝒟𝑖 ∈ 𝔻, being the intended destination 𝒟𝐼 at a given 

time instant, e.g. 𝑡𝑘. These probabilities can be expressed by: 

𝒫(𝑡𝑘) = {𝑝(𝒟𝑖 = 𝒟𝐼|𝐦1:𝑘)  ,   𝑖 = 1,2, … , 𝑁},                                (1) 

such that  𝐦1:𝑘 ≜ {𝐦1, 𝐦2, . . . , 𝐦𝑘} are the filtered gesture-tracker observations (can 

include other sensory data) at the successive time instants {𝑡1, 𝑡2, . . . . , 𝑡𝑘}. For example, 

𝐦𝑛 = [𝑥̂𝑡𝑛
 𝑦̂𝑡𝑛  𝑧̂𝑡𝑛

]′ is the Cartesian coordinates of the pointing finger at 𝑡𝑛. It is noted 

that data sorting, analysis and association steps are needed prior to utilising the pointing 

gesture data.  

The predictor can use a number of low complexity probabilistic models that are ame-

nable to real-time implementations. A review of these models is given in this [15, 16],  

showing that they can lead to a Kalman-filter-type implementation of the intent infer-

ence routine. Within the Bayesian framework,  

𝑝(𝒟𝐼 = 𝒟𝑖|𝐦1:𝑘) ∝ 𝑝(𝐦1:𝑘|𝒟𝐼 = 𝒟𝑖)𝑝(𝒟𝐼 = 𝒟𝑖)         (2) 

where the prior 𝑝(𝒟𝑖 = 𝒟𝐼) on the 𝑖𝑡ℎselectable item (independent of the current point-

ing task) can be attained from semantic data, frequency of use, other sensory data, etc. 

This makes the adopted formulation particularly appealing as any additional infor-

mation (if/when becomes available) can be easily incorporated into the inference pro-

cess via the priors. 

Modelling of Intent with HMMs 

The Bayesian destination predictor applied here relies on defining a Hidden Markov 

Model (HMM) of the pointing motion in 3D, effectively capturing the intrinsic influ-

ence of the intended on-display endpoint (i.e. interface selectable icon) on the fin-

ger/hand movements during the pointing gesture [16, 17]. This is fundamentally distinct 

from previous HCI research on endpoint prediction in 2D scenarios, which often follow 

from Fitt’s law type analysis and uses deterministic models. The statistical modelling 

approach employed by a predictive touch system captures the variability among users 

and their motor capabilities via Stochastic Differential Equations (SDEs), which  rep-

resent the destination-motivated pointing motion in 3D or even 2D. 

Most importantly, a suitable Bayesian formulation with HMMs also allows the flex-

ible and effective modelling of the pointing motion with perturbations via the SDEs. 

The variability in the pointing movement, e.g. due to the user behavior and/or pertur-

bations, can be introduced through the noise element of the state (position, velocity, 

acceleration, etc.) evolution equation. Additionally, the noise generated from the em-

ployed sensor, e.g. a particular gesture tracker, can be incorporated via the measurement 



noise in the observation equation. For further details on the modelling aspect of predic-

tive touch, including destination-driven ones and bridged distributions, the reader is 

referred to [15,16, 44,45]. 

Removing Perturbations: Smoothing Noisy Trajectories 

Employing Gaussian and linear motion as well as observation models permits using the 

efficient Kalman filters to determine (1); typically 𝑁 or more such filters are needed 

[15, 16]. When the user input is perturbed, the predictive display system can handle 

noisy 3D pointing gestures by setting the noise covariance in the motion model relative 

to the measured (experienced) perturbations. This conforms with the Gaussian and lin-

ear modelling assumptions and a higher covariance corresponds to having less certainty 

in the estimated destination-driven pointing finger position, velocity, etc. This tech-

nique is suitable for low to medium perturbation levels that can be represented by 

Gaussian noise, e.g. driving on smooth to moderately bumpy-paved roads.  

The assumption of Gaussian noise in a motion model can be overly restrictive in a 

highly perturbed environments since the pointing hand/finger can move in a highly er-

ratic manner. It can exhibit sudden unintentional noise-related jump movements or 

jolts. In such scenarios, the perturbations present can be treated as an additional non-

linear random jump process causing sudden large changes in the pointing finger posi-

tion and velocity. For example, this can be modelled by the mean-reverting jump-dif-

fusion velocity process [16, 44]. Likelihood estimation for such motion models relies 

on sequential Monte Carlo (SMC), particle, filtering [44, 46], which is computationally 

costly compared to Kalman filtering. A practical alternative to applying this computa-

tionally-expensive inference procedure 𝑁 or more times, is to apply the SMC filtering 

once as a pre-processing stage prior to the destination prediction routine. The objective 

of this pre-processing stage is to remove the most severe effects of large jolts from the 

gesture-tracker observations 𝐦1:𝑘 at 𝑡𝑘 and allow the utilisation of the original linear 

motion models for intent inference [16]. This approach represents a compromise be-

tween effective removal of severe perturbations (jumps) and the computational effi-

ciency of the original models. Figure 2 depicts an example of filtering a highly per-

turbed pointing trajectory using SMC. 

Applying a pre-processing SMC filter or dynamically adjusting the motion model 

covariance can be guided by additional sensory data, such as changes in the level of 

experienced perturbations from auxiliary sensors. Additionally, the filtered free-hand 

pointing gesture can be used not only for pointing, but also for general gesture-based 

interactions. 



 

Figure 2. 3D pointing track before (black) and after (red) applying a variable rate particle 

filter [44]. 

3.3 Feedback-Decision Scheme 

Given the inference results 𝒫(𝑡𝑘) at time 𝑡𝑘, the GUI is modified (if applicable) to 

facilitate  accomplishing the selection task. For example, the system expands/colours 

the GUI items based on 𝒫(𝑡𝑘) or select the predicted intended on-screen item on behalf 

of the user, i.e. without the user physically touching the display surface. The latter is 

dubbed mid-air selection. Possible criterions for deciding the endpoint of the pointing 

gesture at 𝑡𝑘 (if needed depending on the feedback scheme) include choosing the most 

probable destination (i.e. Maximum a Posteriori estimate), the selectable GUI icon 

whose probability exceeds a certain threshold and many others. The decision making 

process within the Bayesian formulation can be addressed, namely in relation to mini-

mising: 𝔼𝒟𝐼
[𝒞(𝒟∗, 𝒟𝐼)|𝐦1:𝑘] where 𝒞(𝒟∗, 𝒟𝐼) is the cost of deciding 𝒟∗ at 𝑡𝑘 as the 

on-screen endpoint given that  𝒟𝐼 is the true intended destination. 

3.4 Additional Sensory Data 

The availability of additional sensory data such as inertia measurement unit (accel-

erometer/gyroscope) can enable the system to determine the operating conditions (e.g. 

whether the user input is noisy) and accordingly modify the applied model and/or adapt 

its parameters and/or perform smoothing prior to intent prediction. On the other hand, 

eye-gaze can provide valuable information on the areas of interest on the display. If 

such information become available, they can be easily incorporated into the Bayesian 

framework via the priors 𝑃𝑟(𝒟𝑖 = 𝒟𝐼), 𝑖 = 1,2, . . . , 𝑁. Alternatively, additional data 

can be part of the observations/measurements vectors 𝐦1:𝑘. 



3.5 Final Remarks 

In summary, the developed Bayesian framework for predictive touch enables: 

­ Handling varying levels of perturbations in the pointing gesture, including those 

induced by the variability in the pointing behaviour, environment-induced noise 

(e.g. turbulence, vibrations and accelerations). 

­ Catering for varying levels of noise due to the sensory technology and inaccuracies 

in the collected measurements (e.g. inaccurate pointing finger and eye-gaze loca-

tions). 

­ Treatment of irregularly spaced and asynchronous data (e.g. due to the sensory tech-

nology) since continuous-time dynamics and observation models are utilised.   

­ Incorporating contextual information (GUI design, frequency of use, user profile, 

context as well as history of use, etc.). 

­ Principled fusion of various sensory data (when available) that can assist facilitating 

interactions with the touch screen. 

Thereby, it meets the desired featured outlined in Section 2. 

4 Design Recommendations  

The main design recommendations stem from the capabilities of the predictive touch 

approach, enabled by intent prediction. For instance, its robustness with respect to per-

turbation and applying intrinsic filtering and principled a Bayesian statistical approach. 

In fact, it is capable of delivering accurate predictions within 30-50 percent of a move-

ment towards the screen as shown from on-road experimental studies for automotive 

applications [16, 47]. It is effective when the following criteria are present: 

 

1. for perturbed environments, including in the presence of extreme jumps-

jolts in the pointing movement, 

2. where tracking data is incomplete, unevenly timed, erratic, and often incor-

rect (i.e. noisy), 

3. for displays or any region of space within the tracking volume that the user 

may move towards, including non-screen elements (dials, switches, etc.), 

4. where reduction of workload or physical stretching is required.  

From a design perspective, any device that can offer 3D tracking of user pointing 

movement and a display may use this approach. For example, a mobile device such as 

a tablet whilst walking. Unlike bracing approaches or force dependent interactions 

which are ergonomically inconvenient in a cockpit environment, this technology facil-

itates usability of interactive displays in general including those that do not have a phys-

ical surface to touch (e.g. non-touch displays, 3D projections and HUDs) via mid-air 

selection and where screens are inaccessible. 



5 Conclusions 

Consideration of touch screen displays in aviation environments shows that signif-

icant issues exist in preventing interaction errors as a result of accidental selection, fail-

ure to select, or incorrect selection resulting from external perturbations on both the 

user and the screen. Three possible solutions to this problem were discussed, namely: 

1) utilizing suitable selection strategies (e.g. pressure-based selection), 2) braced inter-

action, and 3) predictive touch with Bayesian intent prediction. Unlike the former two, 

the predictive interactive display within a Bayesian framework is well suited to the 

human centred design of new information-rich and multimodal interfaces in aerospace 

applications. It can effectively incorporate variabilities in the environment as well as 

interaction styles, contextual information and additional sensory data (when available), 

within the stochastic pointing movement and measurement models as well as the mod-

elling priors. Thus, the developed predictive displays framework is a promising ap-

proach to achieving substantial significant usability improvements to interactions in 

cockpits and vibrating environments. Nevertheless, future experimental work is re-

quired to substantiate its benefits in aerospace applications. 

Intentionality prediction from the tracked pointing movement has the key ad-

vantages that Bayesian prediction can be made without and before contact with the 

screen, reducing workload, and filtering out (suppressing) unintentional perturbations-

induced pointing movements (e.g. resulting from vibrations and accelerations). How-

ever, a disadvantage of this technology is that the operator’s pointing movements (e.g. 

in 3-D) must be tracked. Nonetheless, plethora of third party solutions (gesture tracking 

technologies) are now available for use in confined spaces including automotive and 

aerospace, see [39-43]. This gives rise to a technology that is potentially not restricted 

to screens of any sort and may also assist or allow free-air gestures in a perturbed vi-

brating environment. 
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