11,904 research outputs found
Density Functional Theory for Chiral Nematic Liquid Crystals
Even though chiral nematic phases were the first liquid crystals
experimentally observed more than a century ago, the origin of the
thermodynamic stability of cholesteric states is still unclear. In this Letter
we address the problem by means of a novel density functional theory for the
equilibrium pitch of chiral particles. When applied to right-handed hard
helices, our theory predicts an entropy-driven cholesteric phase, which can be
either right- or left-handed, depending not only on the particle shape but also
on the thermodynamic state. We explain the origin of the chiral ordering as an
interplay between local nematic alignment and excluded-volume differences
between left- and right-handed particle pairs
Mixing the stimulus list in bilingual lexical decision turns cognate facilitation effects into mirrored inhibition effects
To test the BIA+ and Multilink models’ accounts of how bilinguals process words with different degrees of cross-linguistic orthographic and semantic overlap, we conducted two experiments manipulating stimulus list composition. Dutch-English late bilinguals performed two English lexical decision tasks including the same set of cognates, interlingual homographs, English control words, and pseudowords. In one task, half of the pseudowords were replaced with Dutch words, requiring a ‘no’ response. This change from pure to mixed language list context was found to turn cognate facilitation effects into inhibition. Relative to control words, larger effects were found for cognate pairs with an increasing cross-linguistic form overlap. Identical cognates produced considerably larger effects than non-identical cognates, supporting their special status in the bilingual lexicon. Response patterns for different item types are accounted for in terms of the items’ lexical representation and their binding to ‘yes’ and ‘no’ responses in pure vs mixed lexical decision
Effect of daily movement of dairy cattle to fresh grass in morning or afternoon on intake, grazing behaviour, rumen fermentation and milk production
Twenty Holstein cows were split into two equal groups to test the effect of daily move to a previously ungrazed strip after morning milking (MA) or afternoon milking (AA) on herbage intake, grazing behaviour, rumen characteristics and milk production using a randomized block design with three periods of 14 days each. Milking took place at 06.00 and 16.00 h. The chemical composition of grass was similar between treatments, but an interaction between treatment and time of sampling was found in all variables except acid detergent lignin (ADL). The most pronounced differences existed in sugar content. Grass sugar content was greatest following afternoon milking. However, the difference in sugar content in grass was much larger in MA (158 v 114 g/kg dry matter (DM) at 16.00 and 06.00 h, respectively) than in AA (147 v 129 g/kg DM at 16.00 and 06.00 h, respectively). Neutral detergent fibre (NDF) was significantly higher at 06.00 h than at 16.00 h (469 v 425 g/kg DM) in AA, but was equal between morning and afternoon in MA (453 g/kg DM). Herbage intake, determined using the n-alkane technique, did not differ between treatments. Grazing behaviour observed using IGER graze recorders were similar between treatments, except for ruminating time, bite rate and the number of ruminations and boli per period of the day. However, interactions between treatment and time in grazing behaviour variables were found. Grazing time was longer and number of bites was greater following allocation to a new plot (after milking in the morning in MA or milking in the afternoon in AA) when compared to allocation to the same plot after the subsequent milking per treatment (after milking in the afternoon or morning in MA and AA, respectively). In comparison to AA, grazing time in MA was more evenly distributed during the day but lower during the night. The combined effects of differences in grazing behaviour and chemical composition of the grass between treatments in different periods of the day probably caused higher intake of sugars in AA, resulting in a significantly higher non-glucogenic to glucogenic volatile fatty acid ratio (NGR) in the rumen in AA than MA. Milk fat content was lower in MA than AA, but milk production and milk protein and lactose content did not differ. In conclusion, time of allocation to a fresh plot altered the distribution of grazing behaviour variables over the day, and affected NGR and milk fat content, but herbage intake and milk production were not change
SOME MEGASPORES FROM SOUTH AFRICA AND AUSTRALIA
Dr. Plumstead has sent a number of samples
from South Africa to us for maceration of the
spores from them and for an attempt to determine
the horizons from the megaspores only. Other
details were not given. In addition to these samples we had some from Australia, and it became very interesting to compare the spores from S. Africa with those from Australia or other Gondwana
deposits in India or Brasil
The circumgalactic medium in Lyman-alpha: a new constraint on galactic outflow models
Galactic outflows are critical to our understanding of galaxy formation and
evolution. However the details of the underlying feedback process remain
unclear. We compare Ly observations of the circumgalactic medium (CGM)
of Lyman Break Galaxies (LBGs) with mock observations of their simulated CGM.
We use cosmological hydrodynamical `zoom-in' simulations of an LBG which
contains strong, momentum-driven galactic outflows. Simulation snapshots at
and are used, corresponding to the available observational
data. The simulation is post-processed with the radiative transfer code
\textsc{crash} to account for the impact of ionising photons on hydrogen gas
surrounding the simulated LBG. We generate mock absorption line maps for
comparison with data derived from observed close galaxy-galaxy pairs. We
perform calculations of Ly photons scattering through the CGM with our
newly developed Monte-Carlo code \textsc{slaf}, and compare to observations of
diffuse Ly halos around LBGs. Our fiducial galactic outflow model comes
closer to reproducing currently observed characteristics of the CGM in
Ly than a reference inefficient feedback model used for comparison.
Nevertheless, our fiducial model still struggles to reproduce the observed data
of the inner CGM (at impact parameter kpc). Our results suggest that
galactic outflows affect Ly absorption and emission around galaxies
mostly at impact parameters kpc, while cold accretion flows dominate at
larger distances. We discuss the implications of this result, and underline the
potential constraining power of CGM observations - in emission and absorption -
on galactic outflow models.Comment: 14 pages, 12 figure
Recommended from our members
Measuring the impact of observations on the predictability of the Kuroshio Extension in a shallow-water model
In this paper sequential importance sampling is used to assess the impact of observations on a ensemble prediction for the decadal path transitions of the Kuroshio Extension (KE). This particle filtering approach gives access to the probability density of the state vector, which allows us to determine the predictive power — an entropy based measure — of the ensemble prediction. The proposed set-up makes use of an ensemble that, at each time, samples the climatological probability distribution. Then, in a post-processing step, the impact of different sets of observations is measured by the increase in predictive power of the ensemble over the climatological signal during one-year. The method is applied in an identical-twin
experiment for the Kuroshio Extension using a reduced-gravity shallow water model. We investigate the impact of assimilating velocity observations from different locations during the elongated and the contracted meandering state of the KE. Optimal observations location correspond to regions with strong potential vorticity gradients. For the elongated state the optimal location is in the first meander of the KE. During the contracted state of the KE it is located south of Japan, where the Kuroshio separates from the coast
Free Minimization of the Fundamental Measure Theory Functional: Freezing of Parallel Hard Squares and Cubes
Due to remarkable advances in colloid synthesis techniques, systems of
squares and cubes, once an academic abstraction for theorists and simulators,
are nowadays an experimental reality. By means of a free minimization of the
free-energy functional, we apply Fundamental Measure Theory to analyze the
phase behavior of parallel hard squares and hard cubes. We compare our results
with those obtained by the traditional approach based on the Gaussian
parameterization, finding small deviations and good overall agreement between
the two methods. For hard squares our predictions feature at intermediate
packing fraction a smectic phase, which is however expected to be unstable due
to thermal fluctuations. This implies that for hard squares the theory predicts
either a vacancy-rich second-order transition or a vacancy-poor weakly
first-order phase transition at higher density. In accordance with previous
studies, a second-order transition with a high vacancy concentration is
predicted for hard cubes
Depletion-induced biaxial nematic states of boardlike particles
With the aim of investigating the stability conditions of biaxial nematic
liquid crystals, we study the effect of adding a non-adsorbing ideal depletant
on the phase behavior of colloidal hard boardlike particles. We take into
account the presence of the depletant by introducing an effective depletion
attraction between a pair of boardlike particles. At fixed depletant fugacity,
the stable liquid crystal phase is determined through a mean-field theory with
restricted orientations. Interestingly, we predict that for slightly elongated
boardlike particles a critical depletant density exists, where the system
undergoes a direct transition from an isotropic liquid to a biaxial nematic
phase. As a consequence, by tuning the depletant density, an easy experimental
control parameter, one can stabilize states of high biaxial nematic order even
when these states are unstable for pure systems of boardlike particles
Crystallization and gelation in colloidal systems with short-ranged attractive interactions
We systematically study the relationship between equilibrium and
non-equilibrium phase diagrams of a system of short-ranged attractive colloids.
Using Monte Carlo and Brownian dynamics simulations we find a window of
enhanced crystallization that is limited at high interaction strength by a
slowing down of the dynamics and at low interaction strength by the high
nucleation barrier. We find that the crystallization is enhanced by the
metastable gas-liquid binodal by means of a two-stage crystallization process.
First, the formation of a dense liquid is observed and second the crystal
nucleates within the dense fluid. In addition, we find at low colloid packing
fractions a fluid of clusters, and at higher colloid packing fractions a
percolating network due to an arrested gas-liquid phase separation that we
identify with gelation. We find that this arrest is due to crystallization at
low interaction energy and it is caused by a slowing down of the dynamics at
high interaction strength. Likewise, we observe that the clusters which are
formed at low colloid packing fractions are crystalline at low interaction
energy, but glassy at high interaction energy. The clusters coalesce upon
encounter.Comment: 8 pages, 8 figure
Nonextensive aspects of self-organized scale-free gas-like networks
We explore the possibility to interpret as a 'gas' the dynamical
self-organized scale-free network recently introduced by Kim et al (2005). The
role of 'momentum' of individual nodes is played by the degree of the node, the
'configuration space' (metric defining distance between nodes) being determined
by the dynamically evolving adjacency matrix. In a constant-size network
process, 'inelastic' interactions occur between pairs of nodes, which are
realized by the merger of a pair of two nodes into one. The resulting node
possesses the union of all links of the previously separate nodes. We consider
chemostat conditions, i.e., for each merger there will be a newly created node
which is then linked to the existing network randomly. We also introduce an
interaction 'potential' (node-merging probability) which decays with distance
d_ij as 1/d_ij^alpha; alpha >= 0). We numerically exhibit that this system
exhibits nonextensive statistics in the degree distribution, and calculate how
the entropic index q depends on alpha. The particular cases alpha=0 and alpha
to infinity recover the two models introduced by Kim et al.Comment: 7 pages, 5 figure
- …
