7,160 research outputs found

    Entanglement of Bipartite Quantum Systems driven by Repeated Interactions

    Full text link
    We consider a non-interacting bipartite quantum system HSAHSB\mathcal H_S^A\otimes\mathcal H_S^B undergoing repeated quantum interactions with an environment modeled by a chain of independant quantum systems interacting one after the other with the bipartite system. The interactions are made so that the pieces of environment interact first with HSA\mathcal H_S^A and then with HSB\mathcal H_S^B. Even though the bipartite systems are not interacting, the interactions with the environment create an entanglement. We show that, in the limit of short interaction times, the environment creates an effective interaction Hamiltonian between the two systems. This interaction Hamiltonian is explicitly computed and we show that it keeps track of the order of the successive interactions with HSA\mathcal H_S^A and HSB\mathcal H_S^B. Particular physical models are studied, where the evolution of the entanglement can be explicitly computed. We also show the property of return of equilibrium and thermalization for a family of examples

    Complex Obtuse Random Walks and their Continuous-Time Limits

    Full text link
    We study a particular class of complex-valued random variables and their associated random walks: the complex obtuse random variables. They are the generalization to the complex case of the real-valued obtuse random variables which were introduced in \cite{A-E} in order to understand the structure of normal martingales in \RR^n.The extension to the complex case is mainly motivated by considerations from Quantum Statistical Mechanics, in particular for the seek of a characterization of those quantum baths acting as classical noises. The extension of obtuse random variables to the complex case is far from obvious and hides very interesting algebraical structures. We show that complex obtuse random variables are characterized by a 3-tensor which admits certain symmetries which we show to be the exact 3-tensor analogue of the normal character for 2-tensors (i.e. matrices), that is, a necessary and sufficient condition for being diagonalizable in some orthonormal basis. We discuss the passage to the continuous-time limit for these random walks and show that they converge in distribution to normal martingales in \CC^N. We show that the 3-tensor associated to these normal martingales encodes their behavior, in particular the diagonalization directions of the 3-tensor indicate the directions of the space where the martingale behaves like a diffusion and those where it behaves like a Poisson process. We finally prove the convergence, in the continuous-time limit, of the corresponding multiplication operators on the canonical Fock space, with an explicit expression in terms of the associated 3-tensor again

    Implications of CP violating 2HDM in B physics

    Full text link
    The charged fermion mass matrices are invariant under U(1)3U(1)^3 symmetry linked to the fermion number transformation. Under the condition that the definition of this symmetry in arbitrary weak basis does not depend upon Higgs parameters such as ratio of vacuum expectation values, a class of two Higgs doublet models (2HDM) can be identified in which tree level flavor changing neutral currents normally present in 2HDM are absent. However unlike the type I or type II Higgs doublet models, the charged Higgs couplings in these models contain additional flavor dependent CP violating phases. These phases can account for the recent hints of the beyond standard model CP violation in the BdB_d and BsB_s mixing. In particular, there is a range of parameters in which new phases do not contribute to the KK meson CP violation but give identical new physics phases in the BdB_d and BsB_s meson mixing.Comment: 7 pages, 1 figure, Talk given by Bhavik P. Kodrani at 16th International Symposium on Particles, Strings and Cosmology, July 19th - 23rd, 2010, Valencia, Spai

    Velocity Amplitudes in Global Convection Simulations: The Role of the Prandtl Number and Near-Surface Driving

    Full text link
    Several lines of evidence suggest that the velocity amplitude in global simulations of solar convection, U, may be systematically over-estimated. Motivated by these recent results, we explore the factors that determine U and we consider how these might scale to solar parameter regimes. To this end, we decrease the thermal diffusivity κ\kappa along two paths in parameter space. If the kinematic viscosity ν\nu is decreased proportionally with κ\kappa (fixing the Prandtl number Pr=ν/κP_r = \nu/\kappa), we find that U increases but asymptotes toward a constant value, as found by Featherstone & Hindman (2016). However, if ν\nu is held fixed while decreasing κ\kappa (increasing PrP_r), we find that U systematically decreases. We attribute this to an enhancement of the thermal content of downflow plumes, which allows them to carry the solar luminosity with slower flow speeds. We contrast this with the case of Rayleigh-Benard convection which is not subject to this luminosity constraint. This dramatic difference in behavior for the two paths in parameter space (fixed PrP_r or fixed ν\nu) persists whether the heat transport by unresolved, near-surface convection is modeled as a thermal conduction or as a fixed flux. The results suggest that if solar convection can operate in a high-PrP_r regime, then this might effectively limit the velocity amplitude. Small-scale magnetism is a possible source of enhanced viscosity that may serve to achieve this high-PrP_r regime.Comment: 34 Pages, 8 Figures, submitted to a special issue of "Advances in Space Research" on "Solar Dynamo Frontiers

    Predictions of selected flavour observables within the Standard Model

    Full text link
    This letter gathers a selection of Standard Model predictions issued from the metrology of the CKM parameters performed by the CKMfitter group. The selection includes purely leptonic decays of neutral and charged B, D and K mesons. In the light of the expected measurements from the LHCb experiment, a special attention is given to the radiative decay modes of B mesons as well as to the B-meson mixing observables, in particular the semileptonic charge asymmetries a^d,s_SL which have been recently investigated by the D0 experiment at Tevatron. Constraints arising from rare kaon decays are addressed, in light of both current results and expected performances of future rare kaon experiments. All results have been obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using Rfit to handle theoretical uncertainties.Comment: 8 pages, 1 figure, 2 tables. Typos corrected and discussion of agreement between SM and data update

    Impacto ambiental da cultura do arroz irrigado com uso de índice de qualidade de água (IQA).

    Get PDF
    O presente trabalho tem por objetivo avaliar o possível impacto da cultura do arroz irrigado sobre a qualidade das águas do Rio Camboriú (Camboriú/SC), através do estabelecimento de um índice de qualidade de água.bitstream/CNPMA/5829/1/comunicado_08.pd

    Earthshine observation of vegetation and implication for life detection on other planets - A review of 2001 - 2006 works

    Full text link
    The detection of exolife is one of the goals of very ambitious future space missions that aim to take direct images of Earth-like planets. While associations of simple molecules present in the planet's atmosphere (O2O_2, O3O_3, CO2CO_2 etc.) have been identified as possible global biomarkers, we review here the detectability of a signature of life from the planet's surface, i.e. the green vegetation. The vegetation reflectance has indeed a specific spectrum, with a sharp edge around 700 nm, known as the "Vegetation Red Edge" (VRE). Moreover vegetation covers a large surface of emerged lands, from tropical evergreen forest to shrub tundra. Thus considering it as a potential global biomarker is relevant. Earthshine allows to observe the Earth as a distant planet, i.e. without spatial resolution. Since 2001, Earthshine observations have been used by several authors to test and quantify the detectability of the VRE in the Earth spectrum. The egetation spectral signature is detected as a small 'positive shift' of a few percents above the continuum, starting at 700 nm. This signature appears in most spectra, and its strength is correlated with the Earth's phase (visible land versus visible ocean). The observations show that detecting the VRE on Earth requires a photometric relative accuracy of 1% or better. Detecting something equivalent on an Earth-like planet will therefore remain challenging, moreover considering the possibility of mineral artifacts and the question of 'red edge' universality in the Universe.Comment: Invited talk in "Strategies for Life Detection" (ISSI Bern, 24-28 April 2006) to appear in a hardcopy volume of the ISSI Space Science Series, Eds, J. Bada et al., and also in an issue of Space Science Reviews. 13 pages, 8 figures, 1 tabl

    Epstein-Barr virus nuclear antigen 1 interacts with regulator of chromosome condensation 1 dynamically throughout the cell cycle

    Get PDF
    The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is a sequence-specific DNA binding protein which plays an essential role in viral episome replication and segregation, by recruiting the cellular complex of DNA replication onto the origin (oriP) and by tethering the viral DNA onto the mitotic chromosomes. Whereas the mechanisms of viral DNA replication are well documented, those involved in tethering EBNA1 to the cellular chromatin are far from being understood. Here, we have identified Regulator of Chromosome Condensation 1 (RCC1) as a novel cellular partner for EBNA1. RCC1 is the major nuclear guanine nucleotide exchange factor (RanGEF) for the small GTPase Ran enzyme. RCC1, associated with chromatin, is involved in the formation of RanGTP gradients critical for nucleo-cytoplasmic transport, mitotic spindle formation, and nuclear envelope reassembly following mitosis. Using several approaches, we have demonstrated a direct interaction between these two proteins and found that the EBNA1 domains responsible for EBNA1 tethering to the mitotic chromosomes are also involved in the interaction with RCC1. The use of an EBNA1 peptide array confirmed the interaction of RCC1 with these regions and also the importance of the N-terminal region of RCC1 in this interaction. Finally, using confocal microscopy and FRET analysis to follow the dynamics of interaction between the two proteins throughout the cell cycle, we have demonstrated that EBNA1 and RCC1 closely associate on the chromosomes during metaphase, suggesting an essential role for the interaction during this phase, perhaps in tethering EBNA1 to mitotic chromosomes
    corecore