246 research outputs found
Antiferromagnetic interactions in single crystalline Zn1-xCoxO thin films
In a rather contradictory situation regarding magnetic data on Co-doped ZnO,
we have succeeded in fabricating high-quality single crystalline Zn1-xCoxO
(x=0.003-0.07) thin films. This gives us the possibility, for the first time,
to examine the it intrinsic magnetic properties of ZnO:Co at a quantitative
level and therefore to address several unsolved problems, the major one being
the nature of the Co-Co interaction in the ZnO structure.Comment: 4 pages, 4 figures,accepted for publication in PR
Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling
Gold clusters embedded in glass are expected to be hard to dissolve in the form of ions since gold is essentially a nonreactive metal. In spite of that, bleaching of Au-doped nanocomposite sol-gel glass film on a soda-lime glass substrate is demonstrated in which electric-field thermal poling is employed to effectively dissolve randomly distributed gold nanoparticles (15 nm in diameter) embedded in a low conductivity sol-gel glass film with a volume filling factor as small as 2.3%. The surface plasmon absorption band at 520 nm is suppressed in the region covered by the anodic electrode. The phenomenon is explained by the ionization of the gold nanoparticles and the redistribution of gold ions in the glass matrix due to the action of the extremely high electrostatic field locally developed during poling
Magnetic Anisotropy of Co2+ as Signature of Intrinsic Ferromagnetism in ZnO:Co
We report on the magnetic properties of thoroughly characterized Zn1-xCoxO
epitaxial thin films, with low Co concentration, x=0.003-0.005. Magnetic and
EPR measurements, combined with crystal field theory, reveal that isolated Co2+
ions in ZnO possess a strong single ion anisotropy which leads to an "easy
plane" ferromagnetic state when the ferromagnetic Co-Co interaction is
considered. We suggest that the peculiarities of the magnetization process of
this state can be viewed as a signature of intrinsic ferromagnetism in ZnO:Co
materials.Comment: 4 pages, 4 figure
The inhomogeneous reionization times of present-day galaxies
Today's galaxies experienced cosmic reionization at different times in different locations. For the first time, reionization (50% ionized) redshifts, z R , at the location of their progenitors are derived from new, fully coupled radiation-hydrodynamics simulation of galaxy formation and reionization at z > 6, matched to N-body simulation to z = 0. Constrained initial conditions were chosen to form the well-known structures of the local universe, including the Local Group and Virgo, in a (91 Mpc)3 volume large enough to model both global and local reionization. Reionization simulation CoDa I-AMR, by CPU-GPU code EMMA, used (2048)3 particles and (2048)3 initial cells, adaptively refined, while N-body simulation CoDa I-DM2048, by Gadget2, used (2048)3 particles, to find reionization times for all galaxies at z = 0 with masses M(z = 0) ≥ 108 M ⊙. Galaxies with reionized earlier than the universe as a whole, by up to ~500 Myr, with significant scatter. For Milky Way–like galaxies, z R ranged from 8 to 15. Galaxies with typically reionized as late or later than globally averaged 50% reionization at , in neighborhoods where reionization was completed by external radiation. The spread of reionization times within galaxies was sometimes as large as the galaxy-to-galaxy scatter. The Milky Way and M31 reionized earlier than global reionization but later than typical for their mass, neither dominated by external radiation. Their most-massive progenitors at z > 6 had z R =9.8 (MW) and 11 (M31), while their total masses had z R = 8.2 (both)
Heat flow and calculus on metric measure spaces with Ricci curvature bounded below - the compact case
We provide a quick overview of various calculus tools and of the main results
concerning the heat flow on compact metric measure spaces, with applications to
spaces with lower Ricci curvature bounds.
Topics include the Hopf-Lax semigroup and the Hamilton-Jacobi equation in
metric spaces, a new approach to differentiation and to the theory of Sobolev
spaces over metric measure spaces, the equivalence of the L^2-gradient flow of
a suitably defined "Dirichlet energy" and the Wasserstein gradient flow of the
relative entropy functional, a metric version of Brenier's Theorem, and a new
(stronger) definition of Ricci curvature bound from below for metric measure
spaces. This new notion is stable w.r.t. measured Gromov-Hausdorff convergence
and it is strictly connected with the linearity of the heat flow.Comment: To the memory of Enrico Magenes, whose exemplar life, research and
teaching shaped generations of mathematician
Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere
Reasons and Means to Model Preferences as Incomplete
Literature involving preferences of artificial agents or human beings often
assume their preferences can be represented using a complete transitive binary
relation. Much has been written however on different models of preferences. We
review some of the reasons that have been put forward to justify more complex
modeling, and review some of the techniques that have been proposed to obtain
models of such preferences
The INTERNODES method for applications in contact mechanics and dedicated preconditioning techniques
The mortar finite element method is a well-established method for the numerical solution of partial differential equations on domains displaying non-conforming interfaces. The method is known for its application in computational contact mechanics. However, its implementation remains challenging as it relies on geometrical projections and unconventional quadrature rules. The INTERNODES (INTERpolation for NOn-conforming DEcompositionS) method, instead, could overcome the implementation difficulties thanks to flexible interpolation techniques. Moreover, it was shown to be at least as accurate as the mortar method making it a very promising alternative for solving problems in contact mechanics. Unfortunately, in such situations the method requires solving a sequence of ill-conditioned linear systems. In this paper, preconditioning techniques are designed and implemented for the efficient solution of those linear systems
Bioinspired coating for bird-safe glazing optimised for avian and human vision
Bird-window collisions often lead to the death of the bird and damage to the window. However, many animals, including birds, can perceive UV light. Many species have hence developed visual communication in this wavelength range, for instance, thanks to photonic structures. Such structures allowed us to design a new UV-reflecting multilayered coating for bird-safe glazing, through a bioinspiration approach. This coating was optimised for bird and human visual perception.</p
Bioinspired coating for bird-safe glazing optimised for avian and human vision
Bird-window collisions often lead to the death of the bird and damage to the window. However, many animals, including birds, can perceive UV light. Many species have hence developed visual communication in this wavelength range, for instance, thanks to photonic structures. Such structures allowed us to design a new UV-reflecting multilayered coating for bird-safe glazing, through a bioinspiration approach. This coating was optimised for bird and human visual perception.</p
- …
