102 research outputs found

    Pickering emulsions stabilized with curcumin-based solid dispersion particles as mayonnaise-like food sauce alternatives

    Get PDF
    Pickering emulsions, which are emulsions stabilized by colloidal particles, are being increasingly positioned as novel strategies to develop innovative food product solutions. In this context, the present work aims to develop Pickering emulsions stabilized by natural-based curcuminloaded particles produced by the solid dispersion technique as promising mayonnaise-like food sauce alternatives. Two particle formulations (KC1 and KC2) were produced using k-carrageenan as the matrix material and different curcumin contents, then employed in the preparation of three Pickering emulsion formulations comprising different oil fractions (') and particle concentrations (KC1 ' 0.4 (4.7%), KC2 ' 0.4 (4.7%) and KC2 ' 0.6 (4.0%)). The creaming index tests accompanied by the optical microscopy analysis evidenced the good stability of the developed products for the tested period of 28 days. The final products were tested concerning color attributes, pH, oxidative stability, textural, and nutritional composition, and compared with two commercial mayonnaises (traditional and light products). Overall, the produced emulsions were characterized by a bright yellow color (an appealing attribute for consumers), an acidic pH (similar to mayonnaise), and a considerably improved oxidative stability, implying a foreseeable longer shelf life. The sauce KC1 ' 0.4 (4.7%) showed a similar texture to the light commercial mayonnaise, being a promising alternative to conventional sauces, holding a low-fat content and potentially added benefits due to the curcumin and virgin olive oil intrinsic properties.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) and FEDER under Programme PT2020 for financial support to CIMO (UIDB/00690/2020) and LSRE-LCM (UIDB/50020/2020). Promove program of the “la Caixa” Foundation and BPI. National funding by FCT, P.I., through the institutional scientific employment program-contract for Arantzazu Santamaria-Echart, Nuno Rodrigues, Márcio Carocho, and Lillian Barros. FCT for the Research grant SFRH/BD/147326/2019 of Stephany C. de Rezende.info:eu-repo/semantics/publishedVersio

    Analysis of meiotic recombination in 22q11.2, a region that frequently undergoes deletions and duplications

    Get PDF
    BACKGROUND: The 22q11.2 deletion syndrome is the most frequent genomic disorder with an estimated frequency of 1/4000 live births. The majority of patients (90%) have the same deletion of 3 Mb (Typically Deleted Region, TDR) that results from aberrant recombination at meiosis between region specific low-copy repeats (LCRs). METHODS: As a first step towards the characterization of recombination rates and breakpoints within the 22q11.2 region we have constructed a high resolution recombination breakpoint map based on pedigree analysis and a population-based historical recombination map based on LD analysis. RESULTS: Our pedigree map allows the location of recombination breakpoints with a high resolution (potential recombination hotspots), and this approach has led to the identification of 5 breakpoint segments of 50 kb or less (8.6 kb the smallest), that coincide with historical hotspots. It has been suggested that aberrant recombination leading to deletion (and duplication) is caused by low rates of Allelic Homologous Recombination (AHR) within the affected region. However, recombination rate estimates for 22q11.2 region show that neither average recombination rates in the 22q11.2 region or within LCR22-2 (the LCR implicated in most deletions and duplications), are significantly below chromosome 22 averages. Furthermore, LCR22-2, the repeat most frequently implicated in rearrangements, is also the LCR22 with the highest levels of AHR. In addition, we find recombination events in the 22q11.2 region to cluster within families. Within this context, the same chromosome recombines twice in one family; first by AHR and in the next generation by NAHR resulting in an individual affected with the del22q11.2 syndrome. CONCLUSION: We show in the context of a first high resolution pedigree map of the 22q11.2 region that NAHR within LCR22 leading to duplications and deletions cannot be explained exclusively under a hypothesis of low AHR rates. In addition, we find that AHR recombination events cluster within families. If normal and aberrant recombination are mechanistically related, the fact that LCR22s undergo frequent AHR and that we find familial differences in recombination rates within the 22q11.2 region would have obvious health-related implications

    Novel phages of healthy skin metaviromes from South Africa

    Get PDF
    Recent skin metagenomic studies have investigated the harbored viral diversity and its possible influence on healthy skin microbial populations, and tried to establish global patterns of skin-phage evolution. However, the detail associated with the phages that potentially play a role in skin health has not been investigated. While skin metagenome and -metavirome studies have indicated that the skin virome is highly site specific and shows marked interpersonal variation, they have not assessed the presence/absence of individual phages. Here, we took a semi-culture independent approach (metaviromic) to better understand the composition of phage communities on skin from South African study participants. Our data set adds over 130 new phage species of the skin to existing databases. We demonstrated that identical phages were present on different individuals and in different body sites, and we conducted a detailed analysis of the structural organization of these phages. We further found that a bacteriophage related to the Staphylococcus capitis phage Stb20 may be a common skin commensal virus potentially regulating its host and its activities on the ski

    A proposed new bacteriophage subfamily: “Jerseyvirinae”

    Get PDF
    © 2015, Springer-Verlag Wien. Based on morphology and comparative nucleotide and protein sequence analysis, a new subfamily of the family Siphoviridae is proposed, named “Jerseyvirinae” and consisting of three genera, “Jerseylikevirus”, “Sp3unalikevirus” and “K1glikevirus”. To date, this subfamily consists of 18 phages for which the genomes have been sequenced. Salmonella phages Jersey, vB_SenS_AG11, vB_SenS-Ent1, vB_SenS-Ent2, vB_SenS-Ent3, FSL SP-101, SETP3, SETP7, SETP13, SE2, SS3e and wksl3 form the proposed genus “Jerseylikevirus”. The proposed genus “K1glikevirus” consists of Escherichia phages K1G, K1H, K1ind1, K1ind2 and K1ind3. The proposed genus “Sp3unalikevirus” contains one member so far. Jersey-like phages appear to be widely distributed, as the above phages were isolated in the UK, Canada, the USA and South Korea between 1970 and the present day. The distinguishing features of this subfamily include a distinct siphovirus morphotype, genomes of 40.7-43.6kb (49.6-51.4mol% G+C), a syntenic genome organisation, and a high degree of nucleotide sequence identity and shared proteins. All known members of the proposed subfamily are strictly lytic

    Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. Gonorrhoeae strains

    Get PDF
    A curated Web-based user-friendly sequence typing tool based on antimicrobial resistance determinants in Neisseria gonorrhoeae was developed and is publicly accessible (https://ngstar.Canada.ca). The N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) molecular typing scheme uses the DNA sequences of 7 genes (penA, mtrR, porB, ponA, gyrA, parC, and 23S rRNA) associated with resistance to β-lactam antimicrobials, macrolides, or fluoroquinolones. NG-STAR uses the entire penA sequence, combining the historical nomenclature for penA types I to XXXVIII with novel nucleotide sequence designations; the full mtrR sequence and a portion of its promoter region; portions of ponA, porB, gyrA, and parC; and 23S rRNA sequences. NG-STAR grouped 768 isolates into 139 sequence types (STs) (n = 660) consisting of 29 clonal complexes (CCs) having a maximum of a single-locus variation, and 76 NG-STAR STs (n = 109) were identified as unrelated singletons. NG-STAR had a high Simpson's diversity index value of 96.5% (95% confidence interval [CI] = 0.959 to 0.969). The most common STs were NG-STAR ST-90 (n = 100; 13.0%), ST-42 and ST-91 (n = 45; 5.9%), ST-64 (n = 44; 5.72%), and ST-139 (n = 42; 5.5%). Decreased susceptibility to azithromycin was associated with NGSTAR ST-58, ST-61, ST-64, ST-79, ST-91, and ST-139 (n = 156; 92.3%); decreased susceptibility to cephalosporins was associated with NG-STAR ST-90, ST-91, and ST-97 (n = 162; 94.2%); and ciprofloxacin resistance was associated with NG-STAR ST-26, ST-90, ST-91, ST-97, ST-150, and ST-158 (n = 196; 98.0%). All isolates of NG-STAR ST- 42, ST-43, ST-63, ST-81, and ST-160 (n = 106) were susceptible to all four antimicrobials. The standardization of nomenclature associated with antimicrobial resistance determinants through an internationally available database will facilitate the monitoring of the global dissemination of antimicrobial-resistant N. gonorrhoeae strains

    Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes

    Get PDF
    Abstract: The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins

    Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era:A systematic review and meta-analysis

    Get PDF
    BACKGROUND:Routine immunisation with pneumococcal conjugate vaccines (PCV7/10/13) has reduced invasive pneumococcal disease (IPD) due to vaccine serotypes significantly. However, an increase in disease due to non-vaccine types, or serotype replacement, has been observed. Serotypes' individual contributions to IPD play a critical role in determining the overall effects of PCVs. This study examines the distribution of pneumococcal serotypes in children to identify leading serotypes associated with IPD post-PCV introduction. METHODS:A systematic search was performed to identify studies and surveillance reports (published between 2000 and December 2015) of pneumococcal serotypes causing childhood IPD post-PCV introduction. Serotype data were differentiated based on the PCV administered during the study period: PCV7 or higher valent PCVs (PCV10 or PCV13). Meta-analysis was conducted to estimate the proportional contributions of the most frequent serotypes in childhood IPD in each period. RESULTS:We identified 68 studies reporting serotype data among IPD cases in children. We analysed data from 38 studies (14 countries) where PCV7 was administered and 20 (24 countries) where PCV10 or PCV13 have been introduced. Studies reported early and late periods of PCV7 administration (range: 2001∓13). In these settings, serotype 19A was the most predominant cause of childhood IPD, accounting for 21.8% (95%CI 18.6∓25.6) of cases. In countries that have introduced higher valent PCVs, study periods were largely representative of the transition and early years of PCV10 or PCV13. In these studies, the overall serotype-specific contribution of 19A was lower (14.2% 95%CI 11.1∓18.3). Overall, non-PCV13 serotypes contributed to 42.2% (95%CI 36.1∓49.5%) of childhood IPD cases. However, regional differences were noted (57.8% in North America, 71.9% in Europe, 45.9% in Western Pacific, 28.5% in Latin America, 42.7% in one African country, and 9.2% in one Eastern Mediterranean country). Predominant non-PCV13 serotypes overall were 22F, 12F, 33F, 24F, 15C, 15B, 23B, 10A, and 38 (descending order), but their rank order varied by region. CONCLUSION:Childhood IPD is associated with a wide number of serotypes. In the early years after introduction of higher valent PCVs, non-PCV13 types caused a considerable proportion of childhood IPD. Serotype data, particularly from resource-limited countries with high burden of IPD, are needed to assess the importance of serotypes in different settings. The geographic diversity of pneumococcal serotypes highlights the importance of continued surveillance to guide vaccine design and recommendations
    corecore