634 research outputs found

    Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications

    Full text link
    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I^{-} and Cs+^{+} ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential.Comment: submitted to Phys. Rev.

    Ionization in fast atom-atom collisions: The influence and scaling behavior of electron-electron and electron-nucleus interactions

    Get PDF
    We report cross sections for ionization of He coincident with electron loss from He, Li, C, O, and Ne projectiles. For He, Li, C, and O projectiles, the cross sections were measured directly, while the Ne cross sections were obtained by transforming results for He projectiles colliding with Ne. We find that, at energies of about 100–500 keV/u, neutral projectiles can ionize a He target almost as effectively as a charged projectile. The contribution to ionization due to electron-electron interactions is found to scale with the number of available projectile electrons. Comparing ionization by the bound electrons on projectiles to ionization by free electrons, we find that the cross sections for ionization by bound electrons are systematically smaller than those for free electrons

    Velocity-selective sublevel resonance of atoms with an array of current-carrying wires

    Full text link
    Resonance transitions between the Zeeman sublevels of optically-polarized Rb atoms traveling through a spatially periodic magnetic field are investigated in a radio-frequency (rf) range of sub-MHz. The atomic motion induces the resonance when the Zeeman splitting is equal to the frequency at which the moving atoms feel the magnetic field oscillating. Additional temporal oscillation of the spatially periodic field splits a motion-induced resonance peak into two by an amount of this oscillation frequency. At higher oscillation frequencies, it is more suitable to consider that the resonance is mainly driven by the temporal field oscillation, with its velocity-dependence or Doppler shift caused by the atomic motion through the periodic field. A theoretical description of motion-induced resonance is also given, with emphasis on the translational energy change associated with the internal transition.Comment: 7 pages, 3 figures, final versio

    Collective multipole expansions and the perturbation theory in the quantum three-body problem

    Full text link
    The perturbation theory with respect to the potential energy of three particles is considered. The first-order correction to the continuum wave function of three free particles is derived. It is shown that the use of the collective multipole expansion of the free three-body Green function over the set of Wigner DD-functions can reduce the dimensionality of perturbative matrix elements from twelve to six. The explicit expressions for the coefficients of the collective multipole expansion of the free Green function are derived. It is found that the SS-wave multipole coefficient depends only upon three variables instead of six as higher multipoles do. The possible applications of the developed theory to the three-body molecular break-up processes are discussed.Comment: 20 pages, 2 figure

    Development of a thermal ionizer as ion catcher

    Full text link
    An effective ion catcher is an important part of a radioactive beam facility that is based on in-flight production. The catcher stops fast radioactive products and emits them as singly charged slow ions. Current ion catchers are based on stopping in He and H2_2 gas. However, with increasing intensity of the secondary beam the amount of ion-electron pairs created eventually prevents the electromagnetic extraction of the radioactive ions from the gas cell. In contrast, such limitations are not present in thermal ionizers used with the ISOL production technique. Therefore, at least for alkaline and alkaline earth elements, a thermal ionizer should then be preferred. An important use of the TRIμ\muP facility will be for precision measurements using atom traps. Atom trapping is particularly possible for alkaline and alkaline earth isotopes. The facility can produce up to 109^9 s1^{-1} of various Na isotopes with the in-flight method. Therefore, we have built and tested a thermal ionizer. An overview of the operation, design, construction, and commissioning of the thermal ionizer for TRIμ\muP will be presented along with first results for 20^{20}Na and 21^{21}Na.Comment: 10 pages, 4 figures, XVth International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications (EMIS 2007
    corecore