390 research outputs found

    The Offline Software Framework of the Pierre Auger Observatory

    No full text
    To be published in the ProceedingsInternational audienceThe Pierre Auger Observatory is designed to unveil the nature and the origins of the highest energy cosmic rays. The large and geographically dispersed collaboration of physicists and the wide-ranging collection of simulation and reconstruction tasks pose some special challenges for the offline analysis software. We have designed and implemented a general purpose framework which allows collaborators to contribute algorithms and sequencing instructions to build up the variety of applications they require. The framework includes machinery to manage these user codes, to organize the abundance of user-contributed configuration files, to facilitate multi-format file handling, and to provide access to event and time-dependent detector information which can reside in various data sources. A number of utilities are also provided, including a novel geometry package which allows manipulation of abstract geometrical objects independent of coordinate system choice. The framework is implemented in C++, and takes advantage of object oriented design and common open source tools, while keeping the user side simple enough for C++ novices to learn in a reasonable time. The distribution system incorporates unit and acceptance testing in order to support rapid development of both the core framework and contributed user code

    Ramsauer approach to Mie scattering of light on spherical particles

    Full text link
    The scattering of an electromagnetic plane wave by a spherical particle was solved analytically by Gustav Mie in 1908. The Mie solution is expressed as a series with very many terms thus obscuring the physical interpretations of the results. The purpose of the paper is to try to illustrate this phenomenon within the Ramsauer framework used in atomic and nuclear physics. We show that although the approximations are numerous, the Ramsauer analytical formulae describe fairly well the differential and the total cross sections. This allows us to propose an explanation for the origin of the different structures in the total cross section

    Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector

    Full text link
    Cosmic rays extensive air showers (EAS) are associated with transient radio emission, which could provide an efficient new detection method of high energy cosmic rays, combining a calorimetric measurement with a high duty cycle. The CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is investigating this phenomenon in the 10^17 eV region. One challenging point is the understanding of the radio emission mechanism. A first observation indicating a linear relation between the electric field produced and the cross product of the shower axis with the geomagnetic field direction has been presented (B. Revenu, this conference). We will present here other strong evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde

    Slewing Mirror Telescope and the Data-Acquisition System for the UFFO-Pathfinder

    Get PDF
    The Ultra-Fast Flash Observatory (UFFO) aims to detect the earliest moment of Gamma-Ray Bursts (GRBs) which is not well known, resulting into the enhancement of GRB mechanism understanding. The pathfinder mission was proposed to be a scaled-down version of UFFO, and only contains the UFFO Burst Alert & Trigger Telescope (UBAT) measuring the X-ray/gamma-ray with the wide-field of view and the Slewing Mirror Telescope (SMT) with a rapid-response for the UV/optical photons. Once the UBAT detects a GRB candidate with the position accuracy of 10 arcmin, the SMT steers the UV/optical photons from the candidate to the telescope by the fast rotatable mirror and provides the early UV/optical photons measurements with 4 arcsec accuracy. The SMT has a modified Ritchey-ChrÚtien telescope with the aperture size of 10 cm diameter including the rotatable mirror and the image readout by the intensified charge-coupled device. There is a key board called the UFFO Data Acquisition system (UDAQ) that manages the communication of each telescope and also of the satellite and the UFFO overall operation. This pathfinder is designed and built within the limited size and weight of  ~20 kg and the low power consumption up to  ~30 W. We will discuss the design and performance of the UFFO-pathfinder, and its integration to the Lomonosov satellite

    Global Description of EUSO-Balloon Instrument

    Get PDF
    For the JEM-EUSO CollaborationThe EUSO-Balloon is a pathfinder of the JEM-EUSO mission, designed to be installed on-board the International Space Station before the end of this decade. The EUSO-Balloon instrument, conceived as a scaleddown version of the main mission, is currently developed as a payload of a stratospheric balloon operated by CNES, and will, most likely, be launched during the CNES flight campaign in 2014. Several key elements of JEM-EUSO have been implemented in the EUSO-Balloon. The instrument consists of an UV telescope, made of three Fresnel lenses, designed to focus the signal of the UV tracks, generated by highly energetic cosmic rays propagating in the earth's atmosphere, onto a finely pixelized UV camera. In this contribution, we review the main stages of the signal processing of the EUSO-Balloon instrument: the photodetection, the analog electronics, the trigger stages, which select events while rejecting random background, the acquisition system performing data storage and the monitoring, which allows the instrument control during operation

    Status report of the UFFO-pathfinder

    No full text
    For the UFFO CollaborationGamma-Ray Bursts (GRBs) are the most energetic explosions in the universe, their optical photon ïŹ‚ux rise very quickly, typically within one minute, then fall off gradually. Hundreds of GRBs optical light curves have been measured since the ïŹrst discovery of GRB in 1967. However, only a handful of measurements have been made within a minute after the gamma ray signal. Because of this drawback, the short-hard type GRBs and rapid-rising GRBs, which may account for 30% of all GRBs, remain practically unexplored. To reach sub-minute timescales, the Ultra-Fast Flash Observatory (UFFO) uses a rapidly moving mirror to redirect the optical beam instead of slewing the entire spacecraft. The ïŹrst realization of this concept is UFFO-pathïŹnder, which is equipped with fast-response Slewing Mirror Telescope (SMT) and a UFFO Burst Alert and Trigger Telescope (UBAT). SMT has a slewing mirror to redirect optical photons into a telescope and then record them by an intensiïŹed CCD. UBAT uses coded mask to provide X-ray trigger from a GRB and provides the GRB location for SMT. UFFOs sub-minute measurements of the optical emission of dozens of GRBs each year will result in a more rigorous test of current internal shock models, probe the extremes of bulk Lorentz factors, provide the ïŹrst early and detailed measurements of fast-rise GRB optical light curves, and help verify the prospect of GRB as a new standard candle. The UFFO-pathïŹnder is fully integrated with the Lomonosov satellite and is scheduled to be launched in late 2013 or early 2014. We will present the latest progress in this conference

    The UFFO (Ultra Fast Flash Observatory) Pathfinder: Science and Mission

    Get PDF
    Hundreds of gamma-ray burst (GRB) optical light curves have been measured since the discovery of optical afterglows. However, even after nearly 7 years of operation of the Swift Observatory, only a handful of measurements have been made soon (within a minute) after the gamma ray signal. This lack of early observations fails to address burst physics at short time scales associated with prompt emissions and progenitors. Because of this lack of sub-minute data, the characteristics of the rise phase of optical light curve of short-hard type GRB and rapid-rising GRB, which may account for ~30% of all GRB, remain practically unknown. We have developed methods for reaching sub-minute and sub-second timescales in a small spacecraft observatory. Rather than slewing the entire spacecraft to aim the optical instrument at the GRB position, we use rapidly moving mirror to redirect our optical beam. As a first step, we employ motorized slewing mirror telescope (SMT), which can point to the event within 1s, in the UFFO Pathfinder GRB Telescope onboard the Lomonosov satellite to be launched in Nov. 2011. UFFO's sub-minute measurements of the optical emission of dozens of GRB each year will result in a more rigorous test of current internal shock models, probe the extremes of bulk Lorentz factors, provide the first early and detailed measurements of fast-rise GRB optical light curves, and help verify the prospect of GRB as a new standard candle. We will describe the science and the mission of the current UFFO Pathfinder project, and our plan of a full-scale UFFO-100 as the next step.Comment: 4 pages, 5 figures, to appear in the 32nd International Conference on Cosmic Rays (ICRC), Beijing, August 11-18, 201

    Design and implementation of electronics and data acquisition system for Ultra-Fast Flash Observatory

    Get PDF
    The Ultra-Fast Flash Observatory (UFFO) Pathfinder for Gamma-Ray Bursts (GRBs) consists of two telescopes. The UFFO Burst Alert & Trigger Telescope (UBAT) handles the detection and localization of GRBs, and the Slewing Mirror Telescope (SMT) conducts the measurement of the UV/optical afterglow. UBAT is equipped with an X-ray detector, analog and digital signal readout electronics that detects X-rays from GRBs and determines the location. SMT is equipped with a stepping motor and the associated electronics to rotate the slewing mirror targeting the GRBs identified by UBAT. First the slewing mirror points to a GRB, then SMT obtains the optical image of the GRB using the intensified CCD and its readout electronics. The UFFO Data Acquisition system (UDAQ) is responsible for the overall function and operation of the observatory and the communication with the satellite main processor. In this paper we present the design and implementation of the electronics of UBAT and SMT as well as the architecture and implementation of UDAQ
    • 

    corecore