10,896 research outputs found
Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 {\mu}m
Mode-locked fiber laser technology to date has been limited to sub-3 {\mu}m
wavelengths, despite significant application-driven demand for compact
picosecond and femtosecond pulse sources at longer wavelengths. Erbium- and
holmium-doped fluoride fiber lasers incorporating a saturable absorber are
emerging as promising pulse sources for 2.7--2.9 {\mu}m, yet it remains a major
challenge to extend this coverage. Here, we propose a new approach using
dysprosium-doped fiber with frequency shifted feedback (FSF). Using a simple
linear cavity with an acousto-optic tunable filter, we generate 33 ps pulses
with up to 2.7 nJ energy and 330 nm tunability from 2.97 to 3.30 {\mu}m
(3000--3400 cm^-1)---the first mode-locked fiber laser to cover this spectral
region and the most broadly tunable pulsed fiber laser to date. Numerical
simulations show excellent agreement with experiments and also offer new
insights into the underlying dynamics of FSF pulse generation. This highlights
the remarkable potential of both dysprosium as a gain material and FSF for
versatile pulse generation, opening new opportunities for mid-IR laser
development and practical applications outside the laboratory.Comment: Accepted for APL Photonics, 22nd August 201
Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing
The mid-infrared (mid-IR) spectral region holds great promise for new
laser-based sensing technologies, based on measuring strong mid-IR molecular
absorption features. Practical applications have been limited to date, however,
by current low-brightness broadband mid-IR light sources and slow
acquisition-time detection systems. Here, we report a new approach by
developing a swept-wavelength mid-infrared fiber laser, exploiting the broad
emission of dysprosium and using an acousto-optic tunable filter to achieve
electronically controlled swept-wavelength operation from 2.89 to 3.25 {\mu}m
(3070-3460 cm^-1). Ammonia (NH3) absorption spectroscopy is demonstrated using
this swept source with a simple room-temperature single-pixel detector, with
0.3 nm resolution and 40 ms acquisition time. This creates new opportunities
for real-time high-sensitivity remote sensing using simple, compact mid-IR
fiber-based technologies.Comment: Invited article for APL Photonic
Watt-level dysprosium fiber laser at 3.15 {\mu}m with 73% slope efficiency
Rare-earth-doped fiber lasers are emerging as promising high-power
mid-infrared sources for the 2.6-3.0 {\mu}m and 3.3-3.8 {\mu}m regions based on
erbium and holmium ions. The intermediate wavelength range, however, remains
vastly underserved, despite prospects for important manufacturing and defense
applications. Here, we demonstrate the potential of dysprosium-doped fiber to
solve this problem, with a simple in-band pumped grating-stabilized linear
cavity generating up to 1.06 W at 3.15 {\mu}m. A slope efficiency of 73% with
respect to launched power (77% relative to absorbed power) is achieved: the
highest value for any mid-infrared fiber laser to date, to the best of our
knowledge. Opportunities for further power and efficiency scaling are also
discussed
Dysprosium-doped ZBLAN fiber laser tunable from 2.8 {\mu}m to 3.4 {\mu}m, pumped at 1.7 {\mu}m
We demonstrate a mid-infrared dysprosium-doped fluoride fiber laser with a
continuously tunable output range of 573 nm, pumped by a 1.7 {\mu}m Raman fiber
laser. To the best of our knowledge, this represents the largest tuning range
achieved to date from any rare-earth-doped fiber laser and, critically, spans
the 2.8-3.4 {\mu}m spectral region, which contains absorption resonances of
many important functional groups and is uncovered by other rare-earth ions.
Output powers up to 170 mW are achieved, with 21% slope efficiency. We also
discuss the relative merits of the 1.7 {\mu}m pump scheme, including possible
pump excited-state absorption
The tail of the Jurassic fish Leedsichthys problematicus (Osteichthyes: Actinopterygii) collected by Alfred Nicholson Leeds - an example of the importance of historical records in palaeontology
The specimen of the tail of <i>Leedsichthys problematicus</i>, now in The Natural History Museum, London, was one of the most spectacular fossil vertebrates from the Oxford Clay Formation of Peterborough, but as an isolated find it shares no bones in common with the holotype of the genus and species. However, a letter from Alfred Nicholson Leeds and related documents cast valuable new light on the excavation of the tail, indicating that it was discovered with cranial bones, gill-rakers, and two pectoral fins, thereby including elements that can potentially be compared with those of the holotype. The documents also clearly indicate that The Natural History Museum's specimen is not part of the same individual as any other numbered specimen of <i>Leedsichthys</i> as had been speculated on other occasions. The maximum size of the animal represented by The Natural History Museum's specimen was possibly around 9 metres, considerably less than previous estimates of up to 27.6 metres for <i>Leedsichthys</i>. Historical documentary evidence should therefore be rigorously checked both when studying historical specimens in science, and in preparing text for museum display labels
Kinetic analysis of copper(I)/feringa-phosphoramidite catalysed AlEt3 1,4-addition to cyclohex-2-en-1-one
ReactIR studies of mixtures of AlEt3 (A) and cyclohex-2-en-1-one (CX) in Et2O indicate immediate formation of the Lewis acid-base complex (CX.A) at -40 oC (K = 12.0 M-1, ΔGo react -1.1 kcal mol-1). Copper(I) catalysts, derived from pre-catalytic Cu(OAc)2 (up to 5 mol- %) and (R,S,S)-P(binaphtholate){N(CHMePh)2} [Feringa’s ligand (L), up to 5 mol-%] convert CX.A (0.04-0.3 M) into its 1,4-addition product enolate (E) within 2000 sec at -40 oC. Kinetic studies (ReactIR and chiral GC) of CX.A, CX and (R)-3-ethylcyclohexanone (P, the H+ quench product of enolate E) show that the true catalyst is formed in the first 300 sec and this subsequently provides P in 82% ee. This true catalyst converts CX.A to E with a rate law [Cu]1.5[L]0.66[CX.A]1 when [L]/[Cu] ≤ 3.5. Above this ligand ratio inhibition by added ligand with order [L]-2.5 is observed. A rate determining step (rds) of Cu3L2(CX.A)2 stoichiometry is shown to be most consistent with the rate law. The presence of the enolate in the active catalyst (Graphical Abstract) best accounts for the reaction’s induction period and molecularity as [E] ≡ [CX.A]. Catalysis proceeds through a ‘shuttling mechanism’ between two C2 symmetry related ground state intermediates. Each turnover consumes one equivalent of CX.A, expels one molecule of E and forms the new Cu-Et bond needed for the next cycle (Graphic Abstract). The observed ligand (L) inhibition and a non-linear ligand Lee effect on the ee of P are all well simulated by the kinetic model. DFT studies [ωB97X-D/SRSC] support coordination of CX.A to the groundstate Cu-trimer and its rapid conversion to E
- …
