The mid-infrared (mid-IR) spectral region holds great promise for new
laser-based sensing technologies, based on measuring strong mid-IR molecular
absorption features. Practical applications have been limited to date, however,
by current low-brightness broadband mid-IR light sources and slow
acquisition-time detection systems. Here, we report a new approach by
developing a swept-wavelength mid-infrared fiber laser, exploiting the broad
emission of dysprosium and using an acousto-optic tunable filter to achieve
electronically controlled swept-wavelength operation from 2.89 to 3.25 {\mu}m
(3070-3460 cm^-1). Ammonia (NH3) absorption spectroscopy is demonstrated using
this swept source with a simple room-temperature single-pixel detector, with
0.3 nm resolution and 40 ms acquisition time. This creates new opportunities
for real-time high-sensitivity remote sensing using simple, compact mid-IR
fiber-based technologies.Comment: Invited article for APL Photonic