Mode-locked fiber laser technology to date has been limited to sub-3 {\mu}m
wavelengths, despite significant application-driven demand for compact
picosecond and femtosecond pulse sources at longer wavelengths. Erbium- and
holmium-doped fluoride fiber lasers incorporating a saturable absorber are
emerging as promising pulse sources for 2.7--2.9 {\mu}m, yet it remains a major
challenge to extend this coverage. Here, we propose a new approach using
dysprosium-doped fiber with frequency shifted feedback (FSF). Using a simple
linear cavity with an acousto-optic tunable filter, we generate 33 ps pulses
with up to 2.7 nJ energy and 330 nm tunability from 2.97 to 3.30 {\mu}m
(3000--3400 cm^-1)---the first mode-locked fiber laser to cover this spectral
region and the most broadly tunable pulsed fiber laser to date. Numerical
simulations show excellent agreement with experiments and also offer new
insights into the underlying dynamics of FSF pulse generation. This highlights
the remarkable potential of both dysprosium as a gain material and FSF for
versatile pulse generation, opening new opportunities for mid-IR laser
development and practical applications outside the laboratory.Comment: Accepted for APL Photonics, 22nd August 201