18,852 research outputs found

    A Backward Stable Algorithm for Computing the CS Decomposition via the Polar Decomposition

    Full text link
    We introduce a backward stable algorithm for computing the CS decomposition of a partitioned 2n×n2n \times n matrix with orthonormal columns, or a rank-deficient partial isometry. The algorithm computes two n×nn \times n polar decompositions (which can be carried out in parallel) followed by an eigendecomposition of a judiciously crafted n×nn \times n Hermitian matrix. We prove that the algorithm is backward stable whenever the aforementioned decompositions are computed in a backward stable way. Since the polar decomposition and the symmetric eigendecomposition are highly amenable to parallelization, the algorithm inherits this feature. We illustrate this fact by invoking recently developed algorithms for the polar decomposition and symmetric eigendecomposition that leverage Zolotarev's best rational approximations of the sign function. Numerical examples demonstrate that the resulting algorithm for computing the CS decomposition enjoys excellent numerical stability

    Low-speed aerodynamic characteristics of a 0.08-scale YF-17 airplane model at high angles of attack and sideslip

    Get PDF
    Data were obtained with and without the nose boom and with several strake configurations; also, data were obtained for various control surface deflections. Analysis of the results revealed that selected strake configurations adequately provided low Reynolds number simulation of the high Reynolds number characteristics. The addition of the boom in general tended to reduce the Reynolds number effects

    Theory and Simulation of the diffusion of kinks on dislocations in bcc metals

    Full text link
    Isolated kinks on thermally fluctuating (1/2) screw, edge and (1/2) edge dislocations in bcc iron are simulated under zero stress conditions using molecular dynamics (MD). Kinks are seen to perform stochastic motion in a potential landscape that depends on the dislocation character and geometry, and their motion provides fresh insight into the coupling of dislocations to a heat bath. The kink formation energy, migration barrier and friction parameter are deduced from the simulations. A discrete Frenkel-Kontorova-Langevin (FKL) model is able to reproduce the coarse grained data from MD at a fraction of the computational cost, without assuming an a priori temperature dependence beyond the fluctuation-dissipation theorem. Analytic results reveal that discreteness effects play an essential r\^ole in thermally activated dislocation glide, revealing the existence of a crucial intermediate length scale between molecular and dislocation dynamics. The model is used to investigate dislocation motion under the vanishingly small stress levels found in the evolution of dislocation microstructures in irradiated materials

    Sub-grid variability in ammonia concentrations and dry deposition in an upland landscape

    Get PDF

    Impacts of a professional practice doctorate: a collaborative enquiry

    Get PDF
    Doctoral education aims to benefit those who undertake it, but does it exert a wider influence? Professional doctorates are commonly designed to have an impact beyond the individual concerned, but is this influence realised? This paper focuses on a collaborative enquiry by a group of academics and doctoral alumni from non-discipline-specific professional doctorates. The enquiry examined how the professional practice of the graduates changed as a result of their studies and what influence this had on their work and their profession. It found that there was considerable impact on the wider context of the alumni, but that these effects were due more to the capacity-building effect of the doctorate than on the particular outcomes of the study undertaken. Key words: doctoral education, research impact, collaborative enquiry, professional practic

    How to identify when a performance indicator has run its course

    Get PDF
    The official published version can be found at the link below.Increasing numbers of countries are using indicators to evaluate the quality of clinical care, with some linking payment to achievement. For performance frameworks to remain effective the indicators need to be regularly reviewed. The frameworks cannot cover all clinical areas, and achievement on chosen indicators will eventually reach a ceiling beyond which further improvement is not feasible. However, there has been little work on how to select indictors for replacement. The Department of Health decided in 2008 that it would regularly replace indicators in the national primary care pay for performance scheme, the Quality and Outcomes Framework, making a rigorous approach to removal a priority. We draw on our previous work on pay for performance and our current work advising the National Institute for Health and Clinical Excellence (NICE) on the Quality and Outcomes Framework to suggest what should be considered when planning to remove indicators from a clinical performance framework

    Melilite Crystal/Liquid Partitioning of Refractory Lithophiles

    Get PDF
    The trace element chemistry of CAi's is complicated because of their multistage histories (e.g., Grossman, 1980; Murrell and Burnett, 1987). There is more to CAI origin than just igneous processes, even for Type B inclusions. We have initiated in-situ trace element microdistribution studies of synthetic and natural samples, to determine which aspects of CAI trace element microdistributions are due to igneous processes. Our ultimate goal is to assess those aspects that are not explicable in terms of igneous processes, so as to place constraints on the additional processes involved

    Online Meta-learning by Parallel Algorithm Competition

    Full text link
    The efficiency of reinforcement learning algorithms depends critically on a few meta-parameters that modulates the learning updates and the trade-off between exploration and exploitation. The adaptation of the meta-parameters is an open question in reinforcement learning, which arguably has become more of an issue recently with the success of deep reinforcement learning in high-dimensional state spaces. The long learning times in domains such as Atari 2600 video games makes it not feasible to perform comprehensive searches of appropriate meta-parameter values. We propose the Online Meta-learning by Parallel Algorithm Competition (OMPAC) method. In the OMPAC method, several instances of a reinforcement learning algorithm are run in parallel with small differences in the initial values of the meta-parameters. After a fixed number of episodes, the instances are selected based on their performance in the task at hand. Before continuing the learning, Gaussian noise is added to the meta-parameters with a predefined probability. We validate the OMPAC method by improving the state-of-the-art results in stochastic SZ-Tetris and in standard Tetris with a smaller, 10×\times10, board, by 31% and 84%, respectively, and by improving the results for deep Sarsa(λ\lambda) agents in three Atari 2600 games by 62% or more. The experiments also show the ability of the OMPAC method to adapt the meta-parameters according to the learning progress in different tasks.Comment: 15 pages, 10 figures. arXiv admin note: text overlap with arXiv:1702.0311

    A new constant-pressure molecular dynamics method for finite system

    Full text link
    In this letter, by writing the volume as a function of coordinates of atoms, we present a new constant-pressure molecular dynamics method with parameters free. This method is specially appropriate for the finite system in which the periodic boundary condition does not exist. Simulations on the carbon nanotube and the Ni nanoparticle clearly demonstrate the validity of the method. By using this method, one can easily obtain the equation of states for the finite system under the external pressure.Comment: RevTex, 5 pages, 3 figures, submitted to Phys. Rev. Let

    Validity and practical utility of accelerometry for the measurement of in-hand physical activity in horses

    Get PDF
    Background: Accelerometers are valid, practical and reliable tools for the measurement of habitual physical activity (PA). Quantification of PA in horses is desirable for use in research and clinical settings. The objective of this study was to evaluate a triaxial accelerometer for objective measurement of PA in the horse by assessment of their practical utility and validity. Horses were recruited to establish both the optimal site of accelerometer attachment and questionnaire designed to explore owner acceptance. Validity and cut-off values were obtained by assessing PA at various gaits. Validation study- 20 horses wore the accelerometer while being filmed for 10 min each of rest, walking and trotting and 5 mins of canter work. Practical utility study- five horses wore accelerometers on polls and withers for 18 h; compliance and relative data losses were quantified. Results: Accelerometry output differed significantly between the four PA levels (P <0•001) for both wither and poll placement. For withers placement, ROC analyses found optimal sensitivity and specificity at a cut-off of <47 counts per minute (cpm) for rest (sensitivity 99.5 %, specificity 100 %), 967–2424 cpm for trotting (sensitivity 96.7 %, specificity 100 %) and ≥2425 cpm for cantering (sensitivity 96.0 %, specificity 97.0 %). Attachment at the poll resulted in optimal sensitivity and specificity at a cut-off of <707 counts per minute (cpm) for rest (sensitivity 97.5 %, specificity 99.6 %), 1546–2609 cpm for trotting (sensitivity 90.33 %, specificity 79.25 %) and ≥2610 cpm for cantering (sensitivity 100 %, specificity 100 %) In terms of practical utility, accelerometry was well tolerated and owner acceptance high. Conclusion: Accelerometry data correlated well with varying levels of in-hand equine activity. The use of accelerometers is a valid method for objective measurement of controlled PA in the horse
    • …
    corecore