7,931 research outputs found
Campus & alumni news
Boston University Medicine was published by the Boston University Medical Campus, and presented stories on events and topics of interest to members of the BU Medical Campus community. It followed the discontinued publication Centerscope as Boston University Medicine from 1991-2005, and was continued as Campus & Alumni News from 2006-2013 before returning to the title Boston University Medicine from 2014-present
Investigation of peak shapes in the MIBETA experiment calibrations
In calorimetric neutrino mass experiments, where the shape of a beta decay
spectrum has to be precisely measured, the understanding of the detector
response function is a fundamental issue. In the MIBETA neutrino mass
experiment, the X-ray lines measured with external sources did not have
Gaussian shapes, but exhibited a pronounced shoulder towards lower energies. If
this shoulder were a general feature of the detector response function, it
would distort the beta decay spectrum and thus mimic a non-zero neutrino mass.
An investigation was performed to understand the origin of the shoulder and its
potential influence on the beta spectrum. First, the peaks were fitted with an
analytic function in order to determine quantitatively the amount of events
contributing to the shoulder, also depending on the energy of the calibration
X-rays. In a second step, Montecarlo simulations were performed to reproduce
the experimental spectrum and to understand the origin of its shape. We
conclude that at least part of the observed shoulder can be attributed to a
surface effect
Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip
We experimentally study the diffraction of a Bose-Einstein condensate from a
magnetic lattice, realized by a set of 372 parallel gold conductors which are
micro fabricated on a silicon substrate. The conductors generate a periodic
potential for the atoms with a lattice constant of 4 microns. After exposing
the condensate to the lattice for several milliseconds we observe diffraction
up to 5th order by standard time of flight imaging techniques. The experimental
data can be quantitatively interpreted with a simple phase imprinting model.
The demonstrated diffraction grating offers promising perspectives for the
construction of an integrated atom interferometer.Comment: 4 pages, 4 figure
Nonlinear Dynamics of a Bose-Einstein Condensate in a Magnetic Waveguide
We have studied the internal and external dynamics of a Bose-Einstein
condensate in an anharmonic magnetic waveguide. An oscillating condensate
experiences a strong coupling between the center of mass motion and the
internal collective modes. Due to the anharmonicity of the magnetic potential,
not only the center of mass motion shows harmonic frequency generation, but
also the internal dynamics exhibit nonlinear frequency mixing. We describe the
data with a theoretical model to high accuracy. For strong excitations we test
the experimental data for indications of a chaotic behavior.Comment: 4 pages, 4 figure
The Hard X-Ray View of Reflection, Absorption, and the Disk-Jet Connection in the Radio-Loud AGN 3C 33
We present results from Suzaku and Swift observations of the nearby radio
galaxy 3C 33, and investigate the nature of absorption, reflection, and jet
production in this source. We model the 0.5-100 keV nuclear continuum with a
power law that is transmitted either through one or more layers of pc-scale
neutral material, or through a modestly ionized pc-scale obscurer. The standard
signatures of reflection from a neutral accretion disk are absent in 3C 33:
there is no evidence of a relativistically blurred Fe K emission line,
and no Compton reflection hump above 10 keV. We find the upper limit to the
neutral reflection fraction is R<0.41 for an e-folding energy of 1 GeV. We
observe a narrow, neutral Fe K line, which is likely to originate at
least 2,000 R_s from the black hole. We show that the weakness of reflection
features in 3C 33 is consistent with two interpretations: either the inner
accretion flow is highly ionized, or the black-hole spin configuration is
retrograde with respect to the accreting material.Comment: 12 pages, 11 figures, 4 tables. Accepted for publication in Ap
Investigation of planetary ionospheres
Feasibility of using radio sounding techniques to investigate ionospheric properties of planet
Resonant enhancement of ultracold photoassociation rate by electric field induced anisotropic interaction
We study the effects of a static electric field on the photoassociation of a
heteronuclear atom-pair into a polar molecule. The interaction of permanent
dipole moment with a static electric field largely affects the ground state
continuum wave function of the atom-pair at short separations where
photoassociation transitions occur according to Franck-Condon principle.
Electric field induced anisotropic interaction between two heteronuclear ground
state atoms leads to scattering resonances at some specific electric fields.
Near such resonances the amplitude of scattering wave function at short
separation increases by several orders of magnitude. As a result,
photoaasociation rate is enhanced by several orders of magnitude near the
resonances. We discuss in detail electric field modified atom-atom scattering
properties and resonances. We calculate photoassociation rate that shows giant
enhancement due to electric field tunable anisotropic resonances. We present
selected results among which particularly important are the excitations of
higher rotational levels in ultracold photoassociation due to electric field
tunable resonances.Comment: 14 pages,9 figure
Broad Feshbach resonance in the 6Li-40K mixture
We study the widths of interspecies Feshbach resonances in a mixture of the
fermionic quantum gases 6Li and 40K. We develop a model to calculate the width
and position of all available Feshbach resonances for a system. Using the model
we select the optimal resonance to study the 6Li/40K mixture. Experimentally,
we obtain the asymmetric Fano lineshape of the interspecies elastic cross
section by measuring the distillation rate of 6Li atoms from a potassium-rich
6Li/40K mixture as a function of magnetic field. This provides us with the
first experimental determination of the width of a resonance in this mixture,
Delta B=1.5(5) G. Our results offer good perspectives for the observation of
universal crossover physics using this mass-imbalanced fermionic mixture.Comment: 4 pages, 2 figure
- …
