171 research outputs found

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    Β© 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor

    Get PDF
    Understanding the genetic, structural, and biophysical mechanisms that caused protein functions to evolve is a central goal of molecular evolutionary studies. Ancestral sequence reconstruction (ASR) offers an experimental approach to these questions. Here we use ASR to shed light on the earliest functions and evolution of the glucocorticoid receptor (GR), a steroid-activated transcription factor that plays a key role in the regulation of vertebrate physiology. Prior work showed that GR and its paralog, the mineralocorticoid receptor (MR), duplicated from a common ancestor roughly 450 million years ago; the ancestral functions were largely conserved in the MR lineage, but the functions of GRsβ€”reduced sensitivity to all hormones and increased selectivity for glucocorticoidsβ€”are derived. Although the mechanisms for the evolution of glucocorticoid specificity have been identified, how reduced sensitivity evolved has not yet been studied. Here we report on the reconstruction of the deepest ancestor in the GR lineage (AncGR1) and demonstrate that GR's reduced sensitivity evolved before the acquisition of restricted hormone specificity, shortly after the GR–MR split. Using site-directed mutagenesis, X-ray crystallography, and computational analyses of protein stability to recapitulate and determine the effects of historical mutations, we show that AncGR1's reduced ligand sensitivity evolved primarily due to three key substitutions. Two large-effect mutations weakened hydrogen bonds and van der Waals interactions within the ancestral protein, reducing its stability. The degenerative effect of these two mutations is extremely strong, but a third permissive substitution, which has no apparent effect on function in the ancestral background and is likely to have occurred first, buffered the effects of the destabilizing mutations. Taken together, our results highlight the potentially creative role of substitutions that partially degrade protein structure and function and reinforce the importance of permissive mutations in protein evolution

    Evolution of a Signaling Nexus Constrained by Protein Interfaces and Conformational States

    Get PDF
    Heterotrimeric G proteins act as the physical nexus between numerous receptors that respond to extracellular signals and proteins that drive the cytoplasmic response. The GΞ± subunit of the G protein, in particular, is highly constrained due to its many interactions with proteins that control or react to its conformational state. Various organisms contain differing sets of GΞ±-interacting proteins, clearly indicating that shifts in sequence and associated GΞ± functionality were acquired over time. These numerous interactions constrained much of GΞ± evolution; yet GΞ± has diversified, through poorly understood processes, into several functionally specialized classes, each with a unique set of interacting proteins. Applying a synthetic sequence-based approach to mammalian GΞ± subunits, we established a set of seventy-five evolutionarily important class-distinctive residues, sites where a single GΞ± class is differentiated from the three other classes. We tested the hypothesis that shifts at these sites are important for class-specific functionality. Importantly, we mapped known and well-studied class-specific functionalities from all four mammalian classes to sixteen of our class-distinctive sites, validating the hypothesis. Our results show how unique functionality can evolve through the recruitment of residues that were ancestrally functional. We also studied acquisition of functionalities by following these evolutionarily important sites in non-mammalian organisms. Our results suggest that many class-distinctive sites were established early on in eukaryotic diversification and were critical for the establishment of new GΞ± classes, whereas others arose in punctuated bursts throughout metazoan evolution. These GΞ± class-distinctive residues are rational targets for future structural and functional studies

    MPI-PHYLIP: Parallelizing Computationally Intensive Phylogenetic Analysis Routines for the Analysis of Large Protein Families

    Get PDF
    Background: Phylogenetic study of protein sequences provides unique and valuable insights into the molecular and genetic basis of important medical and epidemiological problems as well as insights about the origins and development of physiological features in present day organisms. Consensus phylogenies based on the bootstrap and other resampling methods play a crucial part in analyzing the robustness of the trees produced for these analyses. Methodology: Our focus was to increase the number of bootstrap replications that can be performed on large protein datasets using the maximum parsimony, distance matrix, and maximum likelihood methods. We have modified the PHYLIP package using MPI to enable large-scale phylogenetic study of protein sequences, using a statistically robust number of bootstrapped datasets, to be performed in a moderate amount of time. This paper discusses the methodology used to parallelize the PHYLIP programs and reports the performance of the parallel PHYLIP programs that are relevant to the study of protein evolution on several protein datasets. Conclusions: Calculations that currently take a few days on a state of the art desktop workstation are reduced to calculations that can be performed over lunchtime on a modern parallel computer. Of the three protein methods tested, the maximum likelihood method scales the best, followed by the distance method, and then the maximum parsimony method. However, the maximum likelihood method requires significant memory resources, which limits its application to mor

    Peatland Initiation, Carbon Accumulation, and 2 ka Depth in the James Bay Lowland and Adjacent Regions

    Get PDF
    Copyright Β© 2014 University of Colorado at Boulder, Institute of Arctic and Alpine ResearchPeatlands surrounding Hudson and James Bays form the second largest peatland complex in the world and contain major stores of soil carbon (C). This study utilized a transect of eight ombrotrophic peat cores from remote regions of central and northern Ontario to quantify the magnitude and rate of C accumulation since peatland initiation and for the past 2000 calendar years before present (2 ka). These new data were supplemented by 17 millennially resolved chronologies from a literature review covering the Boreal Shield, Hudson Plains, and Taiga Shield bordering Hudson and James Bays. Peatlands initiated in central and northern Ontario by 7.8 ka following deglaciation and isostatic emergence of northern areas to above sea level. Total C accumulated since inception averaged 109.7 Β± (std. dev.) 36.2 kg C m–2. Approximately 40% of total soil C has accumulated since 2 ka at an average apparent rate of 20.2 Β± 6.9 g C m–2 yr–1. The 2 ka depths correlate significantly and positively with modern gridded climate estimates for mean annual precipitation, mean annual air temperature, growing degree-days > 0 Β°C, and photosynthetically active radiation integrated over days > 0 Β°C. There are significantly shallower depths in permafrost peatlands. Vertical peat accumulation was likely constrained by temperature, growing season length, and photosynthetically active radiation over the last 2 ka in the Hudson Bay Lowlands and surrounding regions.US National Science Foundatio

    Evolution of ligand specificity in vertebrate corticosteroid receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear.</p> <p>Results</p> <p>We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC]) to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (<it>Mus musculus</it>) and the midshipman fish (<it>Porichthys notatus</it>), a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (<it>Neolamprologus pulcher</it>), another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences.</p> <p>Conclusion</p> <p>The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.</p

    The Origins of Novel Protein Interactions during Animal Opsin Evolution

    Get PDF
    Background. Biologists are gaining an increased understanding of the genetic bases of phenotypic change during evolution. Nevertheless, the origins of phenotypes mediated by novel protein-protein interactions remain largely undocumented. Methodology/Principle Findings. Here we analyze the evolution of opsin visual pigment proteins from the genomes of early branching animals, including a new class of opsins from Cnidaria. We combine these data with existing knowledge of the molecular basis of opsin function in a rigorous phylogenetic framework. We identify adaptive amino acid substitutions in duplicated opsin genes that correlate with a diversification of physiological pathways mediated by different protein-protein interactions. Conclusions/Significance. This study documents how gene duplication events early in the history of animals followed by adaptive structural mutations increased organismal complexity by adding novel protein-protein interactions that underlie different physiological pathways. These pathways are central to vision and other photo-reactive phenotypes in most extant animals. Similar evolutionary processes may have been a work in generating other metazoan sensory systems and other physiological processes mediated by signal transduction

    Evolution of a New Function by Degenerative Mutation in Cephalochordate Steroid Receptors

    Get PDF
    Gene duplication is the predominant mechanism for the evolution of new genes. Major existing models of this process assume that duplicate genes are redundant; degenerative mutations in one copy can therefore accumulate close to neutrally, usually leading to loss from the genome. When gene products dimerize or interact with other molecules for their functions, however, degenerative mutations in one copy may produce repressor alleles that inhibit the function of the other and are therefore exposed to selection. Here, we describe the evolution of a duplicate repressor by simple degenerative mutations in the steroid hormone receptors (SRs), a biologically crucial vertebrate gene family. We isolated and characterized the SRs of the cephalochordate Branchiostoma floridae, which diverged from other chordates just after duplication of the ancestral SR. The B. floridae genome contains two SRs: BfER, an ortholog of the vertebrate estrogen receptors, and BfSR, an ortholog of the vertebrate receptors for androgens, progestins, and corticosteroids. BfSR is specifically activated by estrogens and recognizes estrogen response elements (EREs) in DNA; BfER does not activate transcription in response to steroid hormones but binds EREs, where it competitively represses BfSR. The two genes are partially coexpressed, particularly in ovary and testis, suggesting an ancient role in germ cell development. These results corroborate previous findings that the ancestral steroid receptor was estrogen-sensitive and indicate that, after duplication, BfSR retained the ancestral function, while BfER evolved the capacity to negatively regulate BfSR. Either of two historical mutations that occurred during BfER evolution is sufficient to generate a competitive repressor. Our findings suggest that after duplication of genes whose functions depend on specific molecular interactions, high-probability degenerative mutations can yield novel functions, which are then exposed to positive or negative selection; in either case, the probability of neofunctionalization relative to gene loss is increased compared to existing models

    The Use of Orthologous Sequences to Predict the Impact of Amino Acid Substitutions on Protein Function

    Get PDF
    Computational predictions of the functional impact of genetic variation play a critical role in human genetics research. For nonsynonymous coding variants, most prediction algorithms make use of patterns of amino acid substitutions observed among homologous proteins at a given site. In particular, substitutions observed in orthologous proteins from other species are often assumed to be tolerated in the human protein as well. We examined this assumption by evaluating a panel of nonsynonymous mutants of a prototypical human enzyme, methylenetetrahydrofolate reductase (MTHFR), in a yeast cell-based functional assay. As expected, substitutions in human MTHFR at sites that are well-conserved across distant orthologs result in an impaired enzyme, while substitutions present in recently diverged sequences (including a 9-site mutant that β€œresurrects” the human-macaque ancestor) result in a functional enzyme. We also interrogated 30 sites with varying degrees of conservation by creating substitutions in the human enzyme that are accepted in at least one ortholog of MTHFR. Quite surprisingly, most of these substitutions were deleterious to the human enzyme. The results suggest that selective constraints vary between phylogenetic lineages such that inclusion of distant orthologs to infer selective pressures on the human enzyme may be misleading. We propose that homologous proteins are best used to reconstruct ancestral sequences and infer amino acid conservation among only direct lineal ancestors of a particular protein. We show that such an β€œancestral site preservation” measure outperforms other prediction methods, not only in our selected set for MTHFR, but also in an exhaustive set of E. coli LacI mutants
    • …
    corecore