726 research outputs found

    Critical Behavior in the Rotating D-branes

    Get PDF
    The low energy excitation of the rotating D3-branes is thermodynamically stable up to a critical angular momentum density. This indicates that there is a corresponding phase transition of the N{\cal N}=4 large NN super Yang-Mills theory at finite temperature. On the side of supergravity, we investigate the phase transition in the grand canonical ensemble and canonical ensemble. Some critical exponents of thermodynamic quantities are calculated. They obey the static scaling laws. Using the scaling laws related to the correlation length, we get the critical exponents of the correlation function of gauge field. The thermodynamic stability of low energy excitations of the rotating M5-branes and rotating M2-branes is also studied and similar critical behavior is observed. We find that the critical point is shifted in the different ensembles and there is no critical point in the canonical ensemble for the rotating M2-branes. We also discuss the Hawking-Page transition for these rotating branes. In the grand canonical ensemble, the Hawking-Page transition does not occur. In the canonical ensemble, however, the Hawking-Page transition may appear for the rotating D3- and M5-branes, but not for the rotating M2-branes.Comment: Revtex, 17 pages, minor changes, the discussion on the Hawking-Page transition and references adde

    Higgsless Electroweak Theory following from the Spherical Geometry

    Full text link
    A new formulation of the Electroweak Model with 3-dimensional spherical geometry in the target space is suggested. The free Lagrangian in the spherical field space along with the standard gauge field Lagrangian form the full Higgsless Lagrangian of the model, whose second order terms reproduce the same fields with the same masses as the Standard Electroweak Model. The vector bosons and electron masses are generated automatically, so there is no need in special mechanism.Comment: 6 page

    Gauge-Higgs Unification in Orbifold Models

    Get PDF
    Six-dimensional orbifold models where the Higgs field is identified with some internal component of a gauge field are considered. We classify all possible T^2/Z_N orbifold constructions based on a SU(3) electroweak gauge symmetry. Depending on the orbifold twist, models with two, one or zero Higgs doublets can be obtained. Models with one Higgs doublet are particularly interesting because they lead to a prediction for the Higgs mass, which is twice the W boson mass at leading order: m_H=2 m_W. The electroweak scale is quadratically sensitive to the cut-off, but only through very specific localized operators. We study in detail the structure of these operators at one loop, and identify a class of models where they do not destabilize the electroweak scale at the leading order. This provides a very promising framework to construct realistic and predictive models of electroweak symmetry breaking.Comment: 27 pages, uses axodraw.sty; v2: version to appear in JHE

    Logarithmic Correction to Newton Potential in Randall-Sundrum Scenario

    Get PDF
    Using a fixed-energy amplitude in Randall-Sundrum single brane scenario, we compute the Newton potential on the brane. It is shown that the correction terms to the Newton potential involve a logarithmic factor. Especially, when the distance between two point masses are very small compared to AdSAdS radius, the contribution of KK spectrum becomes dominant compared to the usual inversely square law. This fact may be used to prove the existence of an extra dimension experimentally.Comment: 7 pages, 1 figur

    Vacuum Energy Density and Cosmological Constant in dS Brane World

    Full text link
    We discuss the vacuum energy density and the cosmological constant of dS5_5 brane world with a dilaton field. It is shown that a stable AdS4_4 brane can be constructed and gravity localization can be realized. An explicit relation between the dS bulk cosmological constant and the brane cosmological constant is obtained. The discrete mass spectrum of the massive scalar field in the AdS4_4 brane is used to acquire the relationship between the brane cosmological constant and the vacuum energy density. The vacuum energy density in the brane gotten by this method is in agreement with astronomical observations.Comment: 16 pages,4 figure

    The shortest cut in brane cosmology

    Get PDF
    We consider brane cosmology studying the shortest null path on the brane for photons, and in the bulk for gravitons. We derive the differential equation for the shortest path in the bulk for a 1+4 cosmological metric. The time cost and the redshifts for photons and gravitons after traveling their respective path are compared. We consider some numerical solutions of the shortest path equation, and show that there is no shortest path in the bulk for the Randall-Sundrum vacuum brane solution, the linear cosmological solution of Bin\'etruy, et al for ω=1,2/3\omega = -1, -{2/3}, and for some expanding brane universes.Comment: 20 pages, 7 figure

    Supergravity Models for 3+1 Dimensional QCD

    Get PDF
    The most general black M5-brane solution of eleven-dimensional supergravity (with a flat R^4 spacetime in the brane and a regular horizon) is characterized by charge, mass and two angular momenta. We use this metric to construct general dual models of large-N QCD (at strong coupling) that depend on two free parameters. The mass spectrum of scalar particles is determined analytically (in the WKB approximation) and numerically in the whole two-dimensional parameter space. We compare the mass spectrum with analogous results from lattice calculations, and find that the supergravity predictions are close to the lattice results everywhere on the two dimensional parameter space except along a special line. We also examine the mass spectrum of the supergravity Kaluza-Klein (KK) modes and find that the KK modes along the compact D-brane coordinate decouple from the spectrum for large angular momenta. There are however KK modes charged under a U(1)xU(1) global symmetry which do not decouple anywhere on the parameter space. General formulas for the string tension and action are also given.Comment: 27 pages, LaTeX, 11 figures include

    Variations of Little Higgs Models and their Electroweak Constraints

    Full text link
    We calculate the tree-level electroweak precision constraints on a wide class of little Higgs models including: variations of the Littlest Higgs SU(5)/SO(5), SU(6)/Sp(6), and SU(4)^4/SU(3)^4. By performing a global fit to the precision data we find that for generic regions of the parameter space the bound on the symmetry breaking scale f is several TeV, where we have kept the normalization of f constant in the different models. For example, the ``minimal'' implementation of SU(6)/Sp(6) is bounded by f>3.0 TeV throughout most of the parameter space, and SU(4)^4/SU(3)^4 is bounded by f^2 = f_1^2+f_2^2 > (4.2 TeV)^2. In certain models, such as SU(4)^4/SU(3)^4, a large f does not directly imply a large amount of fine tuning since the heavy fermion masses that contribute to the Higgs mass can be lowered below f for a carefully chosen set of parameters. We also find that for certain models (or variations) there exist regions of parameter space in which the bound on f can be lowered into the range 1-2 TeV. These regions are typically characterized by a small mixing between heavy and standard model gauge bosons, and a small (or vanishing) coupling between heavy U(1) gauge bosons and the light fermions. Whether such a region of parameter space is natural or not is ultimately contingent on the UV completion.Comment: 32 pages, 13 figures; revised discussion of SU(4)^4/SU(3)^4 model, bound on f is slightly highe

    Constraints on the SU(3) Electroweak Model

    Full text link
    We consider a recent proposal by Dimopoulos and Kaplan to embed the electroweak SU(2)_L X U(1)_Y into a larger group SU(3)_W X SU(2) X U(1) at a scale above a TeV. This idea is motivated by the prediction for the weak mixing angle sin^2 theta_W = 1/4, which naturally appears in these models so long as the gauge couplings of the high energy SU(2) and U(1) groups are moderately large. The extended gauge dynamics results in new effective operators that contribute to four-fermion interactions and Z pole observables. We calculate the corrections to these electroweak precision observables and carry out a global fit of the new physics to the data. For SU(2) and U(1) gauge couplings larger than 1, we find that the 95% C.L. lower bound on the matching (heavy gauge boson mass) scale is 11 TeV. We comment on the fine-tuning of the high energy gauge couplings needed to allow matching scales above our bounds. The remnants of SU(3)_W breaking include multi-TeV SU(2)_L doublets with electric charge (+-2,+-1). The lightest charged gauge boson is stable, leading to cosmological difficulties.Comment: 17 pages, LaTeX, 4 figures embedded, uses JHEP.cl

    Black Diamonds at Brane Junctions

    Get PDF
    We discuss the properties of black holes in brane-world scenarios where our universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron.Comment: 13 pages, 1 figure, latex, JHEP.cl
    corecore