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Six-dimensional orbifold models where the Higgs field is identified with some
internal component of a gauge field are considered. We classify all possible
T?/Z N orbifold constructions based on a SU(3) electroweak gauge symmetry.
Depending on the orbifold twist, models with two, one or zero Higgs doublets
can be obtained. Models with one Higgs doublet are particularly interesting,
as they lead to a prediction for the Higgs mass that is twice the W boson mass
at leading order: myg = 2my,. The electroweak scale is quadratically sensitive
to the cut-off, but only through very specific localized operators. We study
in detail the structure of these operators at one loop, and identify a class of
models where they do not destabilize the electroweak scale at the leading order.
This provides a very promising framework to construct realistic and predictive
models of electroweak symmetry breaking.
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1. Introduction

If the Standard Model (SM) is seen as a low-energy effective description of a
more fundamental theory valid up to a scale A, the order of magnitude of the Higgs
mass mpy, as suggested by global fits of electroweak precision data, is natural only if
one assumes a quite low scale for A. Taking as a reference value my ~ 100 GeV and
requiring this to be the magnitude of the leading one-loop correction from the Yukawa
coupling to the top quark, dmy ~ §|)\t|/\, one finds A ~ 400 GeV. On the other
hand, in order to respect the stringent bounds from electroweak precision physics, A
should be much higher than that. Present bounds from generic four-fermion operators
with coefficients of order A™2 require A to be at least 5 — 10 TeV (see e.g. [1]). This
discrepancy of more than one order of magnitude between the natural value of A
and its experimental lower bound defines the little hierarchy problem, and can be
interpreted as a measure of the amount of fine-tuning that is required for a generic
extension of the SM. Its present value of about 5 —10 % poses a significant theoretical
problem, which is known to affect also the most promising scenario of physics beyond
the SM, namely Supersymmetry (SUSY). This strongly motivates the investigation
of other possible scenarios which could solve this little hierarchy problem.

The idea that the SM Higgs field might be an internal component of a gauge field
of an extended electroweak symmetry, propagating in more than four dimensions, is
particularly appealing in the above context, because it allows to build models where
the electroweak symmetry breaking (EWSB) scale is stabilized thanks to the higher-
dimensional gauge symmetry. This idea of gauge-Higgs unification was proposed
long ago [2], and recently received renewed interest, in both its non-SUSY [B]-[7] and
SUSY [§] versions. The simplest framework allowing its implementation is a five-
dimensional (5D) SU(3) gauge theory on an S'/Z, orbifold [d]. This model presents
many interesting features, but it predicts, in its minimal version, too low values for
the Higgs mass (see [7] for a detailed study of these models), because of the absence
of any tree-level Higgs potential, a common feature of all 5D models with a single
Higgs doublet.!

New features emerge when applying the above ideas in the presence of two or
more extra dimensions.? First, the gauge kinetic term contains in its non-abelian
part a quartic potential for the internal components of the gauge field, and thus
for the Higgs fields [4]. This opens the possibility of increasing the Higgs mass to
acceptable values. Second, the gauge symmetry allows for the appearance of an
operator, localized at the orbifold fixed points, that is proportional to the internal

In 5D SUSY models, a tree-level Higgs potential can occur, but at the price of having at least
two Higgs doublets.
2D > 5 orbifolds also present new possibilities in the context of flavour physics, see e.g. ref. [I0].



component of the gauge field strength in the hypercharge direction and contains a
mass term for the Higgs fields in its non-abelian part [6, I1]. These tadpoles are
generated with quadratically divergent coefficients and can unfortunately destabilize
the EWSB scale. In supersymmetric models, they correspond to localized Fayet—
Iliopoulos (FI) terms, since the 4D vector auxiliary field D is identified with its 6D
counterpart shifted by the internal components of the gauge field strength [12].

In the light of the above remarks, it is of primary importance to understand
whether and to what extent the idea of gauge—Higgs unification can be implemented
with qualitative success in D > 5 dimensions, before attempting to build a realistic
model. One more drawback of D > 5 models with respect to D = 5 models, besides
the possible occurrence of quadratic divergences, is some loss of predictivity. Indeed,
there are typically more geometric moduli, parametrizing the shape and size of the
internal space, and also more Higgs fields, since there are more internal dimensions.
The simplest model of gauge—Higgs unification in 6D can be obtained by considering
an SU(3) gauge theory on a T?/Z, orbifold [], and gives rise to three geometric
moduli and two Higgs doublets. In this model, there turns out to be a parity symmetry
that can forbid the appearance of the divergent tadpole, or allow to control its size
through some parameter if it is softly broken. The Higgs potential in this model has
the same structure as that of the Minimal Supersymmetric Standard Model (MSSM)
and it seems again difficult to get reasonable masses for all the Higgs fields after the
EWSB.

The aim of this paper is to explore all 6D toroidal orbifold constructions of the
form T?/Zy (with N = 2,3,4,6), giving rise to 6D gauge-Higgs unification without
SUSY. We mainly focus on the minimal SU(3) unified gauge symmetry, which is
broken to the SM SU(2) x U(1) EW symmetry by the orbifold projection, one or
more Higgs fields being responsible for EWSB.? Differently from the N = 2 model,
which necessarily leads to two Higgs doublets, N > 2 models offer more possibilities
and can lead for instance to a single Higgs doublet. Interestingly, in contrast to the
5D case, one also gets a non-vanishing tree-level quartic coupling, given by the usual
gauge coupling. Under the assumption that EWSB occurs, the Higgs mass in these
models is therefore predicted to be twice the W mass at tree-level:

myg = 2my . (1.1)

For these N > 2 models, however, there seems to exist no symmetry able to forbid
the localized divergent tadpole, and the electroweak scale is therefore expected to be
unstable.

3See [T3] for the possibility of constructing Higgless theories where EWSB is achieved by boundary
conditions and unitarity breaking occurs at scales higher than m .



In the following, we present an explicit one-loop computation of the tadpole coef-
ficients and show that the corresponding operator is indeed radiatively generated at
the orbifold fixed points. We study in detail the contributions of scalar, spinor and
vector fields, and show that even an accidental cancellation at each fixed point seems
impossible without introducing fundamental scalars. On the other hand, the integral
of the tadpole over the compact space can happen to vanish. In this case, one can
expect that its presence should not affect the mass of the Higgs field, as happens for
a globally vanishing FI term in 5D SUSY models [I4]. A complete analysis of the
effects of general localized tadpoles on the wave functions and on the spectrum of
the Higgs modes is not totally straightforward. Fortunately, the case of a globally
vanishing tadpole can be analysed along the lines of [I5] for the SUSY case. It turns
out that a globally vanishing tadpole induces a non-trivial gauge-field background
that does not give rise to EWSB and in which there indeed exists a zero-mode for the
Higgs field. Its wave function has a non-trivial profile along the compact space and
displays localization or delocalization at the fixed points, in complete analogy with
SUSY theories with localized FI terms [I5].

We believe that higher-dimensional orbifold constructions of this type, with a
single Higgs field, a tree-level quartic potential and a vanishing integrated tadpole at
the one-loop level, represent an extremely promising class of models. EWSB can be
induced by finite radiative corrections to the Higgs mass term, associated to non-local
operators, which we compute in the following, and is stable at the one-loop level. A
direct sensitivity of the EW scale to the cut-off can only arise at two loops, and the
little hierarchy problem is solved.

The paper is organized as follows. In section 2 we introduce the T2/Zy orbifolds
and analyse the possible 4D field configurations that can be obtained. In section 3
the classical and quantum forms of the Higgs potential are studied. In section 4 we
compute the contributions of bulk gauge fields, as well as scalars and fermions in
arbitrary representations, to the divergent localized tadpole. Finally, section 5 con-
tains a discussion of the effect induced by the tadpole and general phenomenological

implications.

2. Orbifold models in six dimensions

Let us consider a 6D gauge theory compactified on the orbifold T?/Zy. The 2D
torus is parametrized by three real parameters, the two radii R; and Ry and an angle
f, and is defined by identifying points in a plane as

y' ~yl 4+ n2rR, +m 2Ry cosh,

y? ~y? +m2rRysind, (2.1)



for any integers m,n. It is useful to introduce complex coordinates z = %(yl—l—igf), SO
that the metric components® with A, B = z, z are given by ¢, = ¢°* = —1. Defining
the modular parameter U = g—few, and renaming R = Ry, the lattice (1]) can then
be rewritten in the complex plane as

2rR
2

The generator g of the orbifold group Zy acts on the torus as a 5 rotation. Con-

sistent, orbifold constructions are constrained by the possible crystallographic symme-
tries of 2D lattices. They exist only for N = 2 with arbitrary U and for N = 3,4,6

with U = & or other equivalent discrete choices. This means that for N = 3,4,6

z~z4+(m+nU) (2.2)

there is only one Kihler modulus parametrized by R, as in the 5D model on S!/Z,,
whereas in the degenerate case N = 2 there is in addition a complex structure mod-
ulus U. The orbifold generator acts on the coordinates as z — 7z, with 7 = e%,
and is also embedded into the gauge group through a matrix P such that PV = 1.
For simplicity, we consider only group actions in the gauge sector that correspond to
inner automorphisms of the gauge group G (see e.g. [I6] for a discussion of various
orbifold gauge actions), in which P € G (up to a constant overall phase for matter

fields).

The Lagrangian of the orbifold theory is constrained to be the sum of a bulk
contribution, which must be invariant under the full gauge group, and a set of contri-
butions localized at the fixed points of the orbifold action, which have to be invariant
only under the gauge group surviving at these points. The set of points left fixed by
an element ¢* of the orbifold group depends on & = 0,1,..., N —1, and it is therefore
necessary to distinguish sectors labelled by different k. Since g™V ~* is the inverse of
g*, the fixed points in the sectors & and N — k are the same, and their number is

Ny, = [2 sin (%’C)r (2.3)

Moreover, the sector k = 0 is trivial and has of course no fixed points. The physically

given by

distinct and relevant sectors are therefore labelled by k& = 1,...,[N/2|, where [..]
denotes the integer part. The general form of the effective Lagrangian can therefore

be parametrized as
[N/2] Ny

E = £6 + Z Z (5(2) (Z — Zik)‘c‘l,ik y (24)

k=1 ip=1
where Lg represents the bulk 6D Lagrangian and L4, the localized Lagrangians
at the N, ¢* fixed points. Since £ has to be g-invariant, and g acts non-trivially

40Qur convention for the 6D metric is mostly minus.



Figure 1: Form left to right, the 72 /Z3, T?/Z4 and T?/Zg orbifolds and their covering tori. We
indicate with points of decreasing size the g, g2 and ¢> fixed points respectively. The grey region
represents the fundamental domain of the orbifolds, and the segments delimiting it must be identified
according to: A~ D, B~ C.

on some fixed points, there are in general various non-trivial constraints among the
Ly;,’s. Moreover, the orbifold structure respects a discrete translational symmetry
mapping ¢ fixed points onto ¢ fixed points.” This implies that the Lagrangians L, ,
are constrained to be all equal at fixed k and hence there are only [N/2] independent
localized terms appearing in (24)).

Contrary to the more familiar cases of the Z, and Zs orbifolds, for the Z, and
Z¢ orbifolds there are points that are fixed under the action of some element ¢* of
the group, but not fixed under some subgroup of Zy, which permutes them. From
eq. (Z3)) one finds that the Z4 orbifold has two g (and ¢?) fixed points and four ¢ fixed
points: the two ¢ fixed points, and two more points that are exchanged by the action
of g. The Zg orbifold has one g (and ¢°) fixed point, the origin z = 0, three g? and
four ¢ fixed points. Besides z = 0, the remaining two ¢? fixed points are exchanged
by the action of g3, whereas the remaining three ¢ fixed points are exchanged by the
action of g2. We summarize in Fig. 1 the orbifold fixed-point structure of the Zs, Z,
and Zg orbifolds, leaving aside the more familiar Zy case.

In the following we shall restrict our study to the prototype models of gauge—
Higgs unification with a gauge group G = SU(3) that is broken to H = SU(2) x
U(1) by the Zy orbifold projection. We denote by t* the SU(3) generators with
the standard normalization Trt*t® = %5‘“’ in the fundamental representation. The
unbroken generators in SU(2) and U(1) are t?® and t®. The broken generators in
SU(3)/[SU(2) x U(1)] are instead %57 and can be conveniently grouped into the
usual raising and lowering combinations t*' = —2=(t* £it°) and t** = Z-(t® £ it"). In
this basis, the group metric in the sector +i,+j is given by hy; —; = b9 = §.
The most general way to realize the above breaking is obtained by embedding the

5This is true only in the absence of localized matter that is not uniformly distributed over the
fixed points or of discrete Wilson lines.



orbifold twist in the gauge group through the matrix

2np(2+118) ™0
P=r"""3"vs"/ = 0 7" 0] . (2.5)
0 0 1

The number n, must be an integer and is defined only modulo IV, so that there are
a priori N — 1 inequivalent embeddings.

The geometric part of the Zx action on a field is fixed by the decomposition of its
representation under the 6D SO(1,5) Lorentz group in terms of SO(1,3) x SO(2),
where SO(1,3) is the 4D Lorentz group and SO(2) ~ U(1) is the group of internal
rotations. The gauge part of the action on a field in a representation R of SU(3)
is instead given by the twist matrix (Z3) generalized to the representation R. This
fixes the Zy properties of any field, up to an arbitrary overall phase g, such that the
N-th power of the Zy action is trivial on all the components of the field. The orbifold
boundary condition of a generic bosonic or fermionic field component ®, with U(1)
charge s under internal rotations and in the representation R of SU(3), is then given
by

O(72) = gp.r Rs PrP(2) . (2.6)

In this equation, Pr denotes the twist matrix P in the representation R and R, = 7°
is the Lorentz rotation associated to the geometric action of the twist. The overall
phases gp r are such that g = 1 for bosons and g = —1 for fermions, since RY = +1
in the two cases. It is convenient to define grp = gT%, g = g, so that ¢g is an N-th
root of unity for both bosons and fermions. Correspondingly, there are in general N
different boundary conditions, associated to the N possible choices of g. They are
the Zy analogues of the more familiar even and odd parities appearing in Z, models.

The expression of Pr can be conveniently written as
nR oy 18
Pr =" AR (2.7)

where t% is the Cartan generator ¢® in the representation R and ng is an integer
number such that szv = 1. It can be written as ng = n; — no, where ny; and no
are the two Dynkin labels of the representation R. Since the canonically normalized
abelian generator surviving the projection is Qr = %t%, the matrix ([Z7) gives a
phase 72 (49 o a component with U(1) charge ¢ under the decomposition of the
representation R under SU(3) — SU(2) x U(1). The relevant information is listed in
Table [ for the first few representations. In the following two subsections, we consider
in some more detail the decomposition of gauge and matter fields, as given by (2.6l).

6Here and in the following, for simplicity, we do not explicitly indicate the dependence on Z and
on the 4D coordinates x*.



Decomposition of R | ng

2: D1
6

3

3%@2_%@1_§
30@2%@2_%@10
10 4%6930692_%@1—1

o o WA

w O N =

Table 1: Decomposition of the most relevant SU(3) representations.

2.1. Gauge fields

The gauge fields Ay, transform as vectors under SO(1,5) rotations and in the
adjoint representation under gauge transformations. In complex coordinates, the
decomposition of Ay under SO(1,3) x U(1) is very simple: we get a 4D vector field
A, with charge s = 0 and two 4D scalars A, and A; with charges s = —1 and s =1
respectively. The boundary conditions can be obtained from eq. () with g = 1.
The gauge part of the orbifold twist is diagonal if one switches from the standard basis
with components Ay, to the creation-annihilation basis with components Ay 233,
Aper = %(AAM FiAys) and Apype = %(AMﬁ F iApnr). The final result is that
the various components of the gauge field Ay = >, A t* satisfy twisted boundary
conditions with the following phases:

. .1 .1
Anoss 1, Asipsg 7, Asi1038:7 (2.8)

. En . —1En . t+1En
Au:l:i . T p, Az:l:i T p, Agii LT LN (29)

The light modes of untwisted fields consist of the gauge bosons A, 235 forming
the adjoint of the surviving gauge group, the scalar fields A,,; with their complex
conjugates Az_; forming a charged Higgs doublet under this group if n, = 1 mod
N, and the scalar fields A,_; with their complex conjugate A;,; forming a conjugate
charged Higgs doublet if n, = —1 mod N. Referring to the decomposition reported
in Table [, the projection keeps the 3¢ and 1, components for 4D indices and some
numbers n and n,. of the 2 1 and the 2_% components for internal indices, depending on
N and n, =1,..., N — 1. The possibilities for the numbers (n, n.) for the consistent
constructions labelled by the integers (N, n,) are the following:

(n,n.) = (1,1) : for (N,n,) = (2,1); (2.10)
(n,n.) = (1,0) : for (N,n,) = (3,1),(4,1),(6,1); (2.11)
(n,n.) = (0,1): for (N,n,) = (3,2),(4,3),(6,5): (2.12)
(n,n.) = (0,0) : for (N,n,) = (4,2),(6,2),(6,3),(6,4) (2.13)

It is therefore possible to construct models with two conjugate Higgs doublets (Z),

8



a single Higgs doublet (Zs, Z4, Zg) or no Higgs doublets at all (Z4, Zg).

2.2. Matter fields

A 6D Weyl fermion U of definite 6D chirality decomposes under SO(1,3) x U(1)
into two 4D chiral fermions with charges s = +3: Uy = (¢L,R)S:% o) (XR,L)SZ_%,
where L, R denote the 4D chiralities. We thus see from (Z0) that any 6D Weyl
spinor gives rise to two 4D fermions of opposite 4D chiralities, twisted by ¢ and g7,
times the gauge part of the twist. More generally, a 6D spinor field ¥ ,, of 6D
chirality x¢ = £1 transforming in a representation R of the gauge group, gives rise to
different 4D spinor components 1), ,, with U(1) charge ¢ and 4D chirality x4 = %1,
twisted by a phase:

17
X6 2"?(%"“1)

Vgxa 197 2 T : (2.14)
Depending on N and n,, the various possible choices for g allow the zero modes
of different subsets of components to be preserved. We will not list here the many
possibilities, since they can be easily derived from the data reported in Table [

For scalar fields the analysis is simpler, since they are singlets under Lorentz trans-
formations and thus s = 0 in (226]). The twist of a scalar field ¢ in a representation R
of the gauge group is only given by its gauge decomposition. For a generic component
¢q with U(1) charge ¢, one has

DR 972"”("_}”) . (2.15)

Notice that there is a one-to-one correspondence between the case of scalars and that
of spinors, since the additional phase Fse arising for the latter is always an V-
th root of unity and can therefore be compensated by a different choice of g. It is
easy to verify that the zero mode of any component can always be preserved with a
suitable and unique choice of the phase g, both for scalars and for fermions. This is

an important property for model building.

2.3. Wave functions and spectrum

To construct wave functions, it is convenient to introduce two alternative real
coordinates w; and wy, which are aligned with the natural cycles specified by the
complex structure U = U; +iU; and defined by the relation z = %(wl +Uw,). In this
way, w; and ws are independently periodic with period 2rR. For N = 3,4, 6, where
U = 7, the Zy twist changes the point (wq, ws) into the point (—ws, w;+27ws), where
712 denotes the real and imaginary parts of 7. For Z,, one has simply (wq,ws) —
T(wy,ws). It will be convenient in the following to introduce a matrix notation, in

which the vector @ is transformed into the vector Z4w. The matrix Zy is given by

0 1
Iy = <_1 271> (2.16)

9



for N = 3,4,6, while Z, = —I. The basis of periodic functions on 72 is then given
by the usual exponential functions f5(w) ~ e®"¥. In terms of the complex variable

z, the normalized result is

1 L (Npz—AzZ
fa(z) = Weﬁw Sy (2.17)

where V' is the volume of the covering torus and

Ng — n1U = ng —n U
Aj=———, A= ——— . 2.18
Us R Us R ( )
The Zy twist acts on fy and Az as
fa(m2) = faa(2), Azga=T"Na - (2.19)

It is easy to construct Zy covariant wave functions on T2 by applying to the functions
&TI7) the orbifold projection weighted by an arbitrary Zy phase g. Defining for

0. =
convenience the quantity nz = (\/ N ) ™ these are given by

g0,y — i =

and, thanks to (ZI9), satisfy the generic twisted boundary condition hi%(7z) = ghZ(z).
It is easy to verify that these functions are also orthonormal with respect to the
Kaluza—Klein (KK) momenta as well as the twist g. However, the functions hZ(z) are
not all independent: those with mode vectors connected by the orbifold action are
proportional to each other through a phase:

hl (2) = g"hi(z2) . (2.21)

Correspondingly, the mode vectors 77 are not all independent but restricted to belong
to some fundamental domain, which can be determined as follows. The matrix (ZI6)
represents the Zy action on the mode vector 77 for the torus wave functions. For
N # 2, it amounts to a rotation with phase 7 on the complex plane u = —ny + ™n..
This means that we can divide the space Z? of all possible mode vectors 7 into
the origin, which is left fixed by Zy, plus N sectors Dy, with £ = 0,...,N — 1,
mapped into each other by Zy. For N > 2, these domains can all be defined as
Dy = {ii € Z*|(Z%n), < 0,(Z%n)y > 0}, whereas for N = 2, they are given by
Dy={n€ Z*n >0®(ny =0,ny>0)}, Dy ={i€ Z*n, <0® (n; =0,ny <0)}.
The independent wave functions in (ZZII) are then associated to i € Dy and the
origin, the ones associated to 7 € Dy, with k # 0 being the Zy-transformed of these.

It is now straightforward to characterize the spectrum of a generic 72 /Zy orbifold
model. A field ¢9(z) with generic twisted boundary conditions

¢?(r2) = g¢*(2) (2.22)

10



can be expanded in KK modes as

¢7(2) = 0" gghg(2) + D dphi(2) - (2.23)

neDy

The mass mj of the 7-mode is given by

\/n% + n% - 2U1n1n2
UsR '

ms = |\a| = (2.24)
It is important to notice that the spectrum of modes does not depend on g, apart
from the zero mode, which exists only if g = 1.

3. Higgs potential

The biggest problem in achieving gauge-Higgs unification in the minimal 5D case
is the absence of a tree-level Higgs potential, resulting in too small a Higgs mass.
This is the main reason for considering gauge-Higgs unification in 6D, where such
tree-level quartic term, arising from the gauge kinetic term, is naturally present. As
suggested by several authors [, B, its presence can help getting realistic EWSB
and Higgs masses. Most of the 6D models discussed so far, however, were based on
Z, orbifold constructions that necessarily lead to two charged Higgs doublets. In
this case, the tree-level quartic term has a flat direction, just as in the MSSM, and
therefore fluctuations along this direction only have radiatively induced masses, which
in general tend to be too small.

We now focus our attention on 7?%/Zy orbifold constructions with N > 2 leading
to one Higgs doublet. As we shall show below, these models have a non-vanishing
quartic tree-level potential, in contrast to the S1/Z, orbifold. This term is responsible
for an important distinction between the interpretation of EWSB in T2 /Zy and S'/Z,
orbifolds. In the 5D model, the vacuum expectation value (VEV) of the Higgs field is a
flat direction of the classical potential and corresponds to a Wilson loop, which is also
equivalent to a twist in the boundary conditions around S* [I7]. In 6D models, on the
contrary, the VEV of the Higgs field is not a flat direction of the classical potential,
and such interpretation is missing. Indeed, there exist no continuous families of
solutions to the usual orbifold consistency conditions for Wilson loops [I8] in the
case of SU(3) gauge theories on T?/Zy with N > 2. Only discrete Wilson loops
are allowed. Nevertheless, the 5D and 6D models share the interesting property
that the Higgs dynamics is much more constrained than what is just implied by the
surviving gauge symmetry. This is a consequence of the non-linearly realized remnant
of the higher-dimensional gauge symmetry associated to parameters depending on the
internal coordinates, under which the Higgs field transforms inhomogeneously [19].

11



Let us now compute the classical Higgs potential that arises for the single Higgs
models on T?/Zy with N = 3,4,6. We choose n, = 1, but the case n, = N — 1
is perfectly similar up to an overall conjugation and therefore physically equivalent.
The classical Lagrangian of the 6D theory is given simply by L = —%trF 2 N, Where
Fyn = OuAn — OnAy — igs [Ay, Ay]. The Lagrangian for the zero modes A), AY
and AY is easily obtained by integrating over the internal torus. The result is given
by

L— —% b F2 4 2t DAY — g2 tr [A%, A%, (3.1)

where g4 = gg/ V'V is the gauge coupling of the 4D effective theory below the compact-
ification scale, I Sv = 0,A) —ayAg —igy [A?L, A9 is the field strength of the massless 4D
gauge bosons, and D, A . = 9, A7, —igs[A}, A ;] is the covariant derivative on the
Higgs field. The three weak gauge bosons and the hypercharge gauge boson are iden-
tified as W, = A, for a = 1,2,3 and B, = A);. The zero modes of A, =3, A 1%,
where a = 1,2, 3,8, are then given by

(Wit 75 B VW, 0
Ai=5| VIW, Wi+ 5B. 0 : (3.2)
2
0 0 —% B,

Similarly, the two complex components of the Higgs doublet are h, = A%, and
hq = AY,,, and their complex conjugates are given by hf = A2 | and b} = A_,.
The zero modes of A, =3, At and A; =3, A;_;t~" are thus given by

0 0 A, ] 0O 0 O

1
AS:E 0 0 hg ,Agzﬁ 0 0 0]. (3.3)

0 0 0 hi hhi 0O
Substituting these expressions in the Lagrangian, and switching from the SU(3)
to an SU(2) notation, we finally find:

1 1 oy 1
L=—strFV? — ~FB2 4 |(9, - ig4Wua% — igitan by 5 B, )h

2
2 it |

— ‘/class(h) ) (34)
where tan 0y = /3 and

92 4
Vdass(h):§4|h\ . (3.5)

The weak mixing angle arising in this construction is too large, but there are various
ways of solving this problem, most notably by adding extra U(1) gauge fields.

Quantum fluctuations induce a correction to the classical potential (BH) and can
trigger radiative symmetry breaking. The quantum effective potential can only de-
pend on gauge-invariant quantities. These can be local or non-local in the compact

12



dimensions. Non-local operators involve Wilson lines wrapping around the internal
space and are generated with finite coefficients whose size is controlled by the com-
pactification scale 1/R. The local and potentially divergent operators contributing to
the Higgs potential arise from the non-derivative part of F., like the classical quartic
term. Gauge invariance allows two possible classes of local operators of this kind: even
powers of I,y in the bulk or arbitrary powers of F: localized at the orbifold fixed
points. In general, such terms will be generated at the quantum level with divergent
coefficients. At one-loop order, the bulk operators that can lead to divergences in the
Higgs potential are the gauge kinetic term F;5 and a quartic coupling F;y, leading
to quadratic and logarithmic divergences to V(h) respectively. Localized operators
are of the form ¢”F”, where p is any positive integer. Quadratic and logarithmic
divergences can arise from the tadpole operator p = 1 and the kinetic operator p = 2
respectively.

Since the quadratic bulk divergence gives rise only to a wave-function renormal-
ization, we see that the only quadratic divergence to the Higgs potential comes from
the localized tadpole operator F;. In general, the latter induces a modification to
the background and, in its non-abelian part, possible mixings between the Higgs and
its KK modes, aside from a quadratically divergent mass term for the Higgs field
h. In the rough approximation of neglecting the backreaction induced by the modi-
fied background and the KK mixings, effects that we will consider in section 5, and
also neglecting all the logarithmic divergences, we see that the leading terms in the
one-loop effective potential for the Higgs are

Vauant (h) = —p®| R[> + A|A|*, (3.6)

where p? is a radiatively generated and possibly divergent mass term and A = ¢?/2
is the tree-level quartic term. Assuming p? > 0 so that EWSB can occur, we have
(|h]) = v/v/2 with v = pu/+/A. At the minimum,

myg = \/iu:\/iv\/x
1

my = 5 gv. (3.7)

The ratio between my and myy is therefore predicted in a completely model-independent

= @ =92 (3.8)
mw g

Extra U(1) fields, possibly needed to fix the weak-mixing angle to the correct value,

way to be
mpg

do not modify eq. (B8). The main radiative correction to eq. (BH) arises from the
Higgs wave-function distortion induced by the tadpole operator F.:, as explained in
section 5. This effect can be estimated by Naive Dimensional Analysis (NDA) to
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give O(1) corrections to eq. (BH). In spite of this, the value of the Higgs mass is
significantly increased with respect to the previously considered 5D models or Zs
orbifold constructions.

4. Divergent localized tadpole

We have seen that gauge invariance allows a localized interaction that is linear
in the field strength, in addition to the universally allowed higher-order interactions
involving even powers of the field strength. The localized interaction is particularly
relevant, since it involves a mass term for the Higgs fields [IT]. It has the form’

[N/2] Cy Ni
Liag = —i Z ~ Z 5(2)(2 - sz)Ffz(Z) ) (4.1)
=1 N ir=1
where Cj, are real coefficients of mass dimension 1 and F&. is the field strength of the
U(1) component left unbroken by the orbifold breaking, which in terms of 6D fields
reads
F% = 0,A% — 0; A% + gs % AL Az, . (4.2)

In Zs orbifold models, the parity symmetry z < Zz can be implemented and it forbids
the appearance of the operator (B2), which is odd under this discrete symmetry
[6, IT]. This parity can be generalized to Zy orbifolds, with N > 2, only if the twist
matrix P is such that P2 = I. The allowed form of the tadpole operator is then
Im Tr PF.;, which automatically vanishes whenever P? = I. More precisely, we will
see that the term associated to k in (Bl can be written as Im Tr P*F,;, implying
that the tadpole vanishes in the sectors k such that P?* = I, when the above Z
symmetry can be implemented. Notice that projections that leave only one Higgs
doublet do not satisfy P2 = I and hence are generally affected by tadpoles. We
verify this statement by performing a detailed calculation of the coefficients Cj, for
all Zy models at one-loop order. In particular we compute the contribution to the
tadpole arising from gauge (and ghost) fields, and from an arbitrary bulk scalar or
fermion in a representation R of SU(3). Possible localized boundary fields cannot
minimally couple to the fields appearing in (fL2), because of the residual non-linearly
realized gauge symmetries that are unbroken at the orbifold fixed points [T9]. We
therefore consider in the following 6D bulk fields only. This computation is also
useful to understand whether and under what circumstances an accidental one-loop
cancellation is possible.

"Abelian gauge fields that are present already before the orbifold projection and are unbroken
can also develop a localized divergence term as in ([l), but in this case the associated divergent
mass term for even scalars, the last 