
ar
X

iv
:h

ep
-t

h/
03

12
26

7v
2 

 2
5 

Fe
b 

20
04

CERN-TH/2003-315

ROMA-1365/03

SISSA-107/2003/EP

Gauge-Higgs Unification

in Orbifold Models

C. A. Scruccaa, M. Seroneb, L. Silvestrinic, A. Wulzerb

aTheor. Phys. Div., CERN, CH-1211 Geneva 23, Switzerland

bISAS-SISSA and INFN, Via Beirut 2-4, I-34013 Trieste, Italy

cINFN, Sez. di Roma, Dip. di Fisica, Univ. di Roma “La Sapienza”

P.le Aldo Moro 2, I-00185, Rome, Italy

Abstract

Six-dimensional orbifold models where the Higgs field is identified with some

internal component of a gauge field are considered. We classify all possible

T 2/ZN orbifold constructions based on a SU(3) electroweak gauge symmetry.

Depending on the orbifold twist, models with two, one or zero Higgs doublets

can be obtained. Models with one Higgs doublet are particularly interesting,

as they lead to a prediction for the Higgs mass that is twice the W boson mass

at leading order: mH = 2mW . The electroweak scale is quadratically sensitive

to the cut-off, but only through very specific localized operators. We study

in detail the structure of these operators at one loop, and identify a class of

models where they do not destabilize the electroweak scale at the leading order.

This provides a very promising framework to construct realistic and predictive

models of electroweak symmetry breaking.
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1. Introduction

If the Standard Model (SM) is seen as a low-energy effective description of a

more fundamental theory valid up to a scale Λ, the order of magnitude of the Higgs

mass mH , as suggested by global fits of electroweak precision data, is natural only if

one assumes a quite low scale for Λ. Taking as a reference value mH ∼ 100 GeV and

requiring this to be the magnitude of the leading one-loop correction from the Yukawa

coupling to the top quark, δmH ∼
√

3
2π
|λt|Λ, one finds Λ ∼ 400 GeV. On the other

hand, in order to respect the stringent bounds from electroweak precision physics, Λ

should be much higher than that. Present bounds from generic four-fermion operators

with coefficients of order Λ−2 require Λ to be at least 5 − 10 TeV (see e.g. [1]). This

discrepancy of more than one order of magnitude between the natural value of Λ

and its experimental lower bound defines the little hierarchy problem, and can be

interpreted as a measure of the amount of fine-tuning that is required for a generic

extension of the SM. Its present value of about 5−10 % poses a significant theoretical

problem, which is known to affect also the most promising scenario of physics beyond

the SM, namely Supersymmetry (SUSY). This strongly motivates the investigation

of other possible scenarios which could solve this little hierarchy problem.

The idea that the SM Higgs field might be an internal component of a gauge field

of an extended electroweak symmetry, propagating in more than four dimensions, is

particularly appealing in the above context, because it allows to build models where

the electroweak symmetry breaking (EWSB) scale is stabilized thanks to the higher-

dimensional gauge symmetry. This idea of gauge–Higgs unification was proposed

long ago [2], and recently received renewed interest, in both its non-SUSY [3]–[7] and

SUSY [8] versions. The simplest framework allowing its implementation is a five-

dimensional (5D) SU(3) gauge theory on an S1/Z2 orbifold [9]. This model presents

many interesting features, but it predicts, in its minimal version, too low values for

the Higgs mass (see [7] for a detailed study of these models), because of the absence

of any tree-level Higgs potential, a common feature of all 5D models with a single

Higgs doublet.1

New features emerge when applying the above ideas in the presence of two or

more extra dimensions.2 First, the gauge kinetic term contains in its non-abelian

part a quartic potential for the internal components of the gauge field, and thus

for the Higgs fields [4]. This opens the possibility of increasing the Higgs mass to

acceptable values. Second, the gauge symmetry allows for the appearance of an

operator, localized at the orbifold fixed points, that is proportional to the internal

1In 5D SUSY models, a tree-level Higgs potential can occur, but at the price of having at least

two Higgs doublets.
2D > 5 orbifolds also present new possibilities in the context of flavour physics, see e.g. ref. [10].
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component of the gauge field strength in the hypercharge direction and contains a

mass term for the Higgs fields in its non-abelian part [6, 11]. These tadpoles are

generated with quadratically divergent coefficients and can unfortunately destabilize

the EWSB scale. In supersymmetric models, they correspond to localized Fayet–

Iliopoulos (FI) terms, since the 4D vector auxiliary field D is identified with its 6D

counterpart shifted by the internal components of the gauge field strength [12].

In the light of the above remarks, it is of primary importance to understand

whether and to what extent the idea of gauge–Higgs unification can be implemented

with qualitative success in D > 5 dimensions, before attempting to build a realistic

model. One more drawback of D > 5 models with respect to D = 5 models, besides

the possible occurrence of quadratic divergences, is some loss of predictivity. Indeed,

there are typically more geometric moduli, parametrizing the shape and size of the

internal space, and also more Higgs fields, since there are more internal dimensions.

The simplest model of gauge–Higgs unification in 6D can be obtained by considering

an SU(3) gauge theory on a T 2/Z2 orbifold [5], and gives rise to three geometric

moduli and two Higgs doublets. In this model, there turns out to be a parity symmetry

that can forbid the appearance of the divergent tadpole, or allow to control its size

through some parameter if it is softly broken. The Higgs potential in this model has

the same structure as that of the Minimal Supersymmetric Standard Model (MSSM)

and it seems again difficult to get reasonable masses for all the Higgs fields after the

EWSB.

The aim of this paper is to explore all 6D toroidal orbifold constructions of the

form T 2/ZN (with N = 2, 3, 4, 6), giving rise to 6D gauge–Higgs unification without

SUSY. We mainly focus on the minimal SU(3) unified gauge symmetry, which is

broken to the SM SU(2) × U(1) EW symmetry by the orbifold projection, one or

more Higgs fields being responsible for EWSB.3 Differently from the N = 2 model,

which necessarily leads to two Higgs doublets, N > 2 models offer more possibilities

and can lead for instance to a single Higgs doublet. Interestingly, in contrast to the

5D case, one also gets a non-vanishing tree-level quartic coupling, given by the usual

gauge coupling. Under the assumption that EWSB occurs, the Higgs mass in these

models is therefore predicted to be twice the W mass at tree-level:

mH = 2mW . (1.1)

For these N > 2 models, however, there seems to exist no symmetry able to forbid

the localized divergent tadpole, and the electroweak scale is therefore expected to be

unstable.

3See [13] for the possibility of constructing Higgless theories where EWSB is achieved by boundary

conditions and unitarity breaking occurs at scales higher than mZ .
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In the following, we present an explicit one-loop computation of the tadpole coef-

ficients and show that the corresponding operator is indeed radiatively generated at

the orbifold fixed points. We study in detail the contributions of scalar, spinor and

vector fields, and show that even an accidental cancellation at each fixed point seems

impossible without introducing fundamental scalars. On the other hand, the integral

of the tadpole over the compact space can happen to vanish. In this case, one can

expect that its presence should not affect the mass of the Higgs field, as happens for

a globally vanishing FI term in 5D SUSY models [14]. A complete analysis of the

effects of general localized tadpoles on the wave functions and on the spectrum of

the Higgs modes is not totally straightforward. Fortunately, the case of a globally

vanishing tadpole can be analysed along the lines of [15] for the SUSY case. It turns

out that a globally vanishing tadpole induces a non-trivial gauge-field background

that does not give rise to EWSB and in which there indeed exists a zero-mode for the

Higgs field. Its wave function has a non-trivial profile along the compact space and

displays localization or delocalization at the fixed points, in complete analogy with

SUSY theories with localized FI terms [15].

We believe that higher-dimensional orbifold constructions of this type, with a

single Higgs field, a tree-level quartic potential and a vanishing integrated tadpole at

the one-loop level, represent an extremely promising class of models. EWSB can be

induced by finite radiative corrections to the Higgs mass term, associated to non-local

operators, which we compute in the following, and is stable at the one-loop level. A

direct sensitivity of the EW scale to the cut-off can only arise at two loops, and the

little hierarchy problem is solved.

The paper is organized as follows. In section 2 we introduce the T 2/ZN orbifolds

and analyse the possible 4D field configurations that can be obtained. In section 3

the classical and quantum forms of the Higgs potential are studied. In section 4 we

compute the contributions of bulk gauge fields, as well as scalars and fermions in

arbitrary representations, to the divergent localized tadpole. Finally, section 5 con-

tains a discussion of the effect induced by the tadpole and general phenomenological

implications.

2. Orbifold models in six dimensions

Let us consider a 6D gauge theory compactified on the orbifold T 2/ZN . The 2D

torus is parametrized by three real parameters, the two radii R1 and R2 and an angle

θ, and is defined by identifying points in a plane as

y1 ∼ y1 + n 2πR1 +m 2πR2 cos θ ,

y2 ∼ y2 +m 2πR2 sin θ , (2.1)
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for any integers m,n. It is useful to introduce complex coordinates z = 1√
2
(y1+iy2), so

that the metric components4 with A,B = z, z̄ are given by gzz̄ = gzz̄ = −1. Defining

the modular parameter U = R2

R1
eiθ, and renaming R ≡ R1, the lattice (2.1) can then

be rewritten in the complex plane as

z ∼ z + (m+ nU)
2πR√

2
. (2.2)

The generator g of the orbifold group ZN acts on the torus as a 2π
N

rotation. Con-

sistent orbifold constructions are constrained by the possible crystallographic symme-

tries of 2D lattices. They exist only for N = 2 with arbitrary U and for N = 3, 4, 6

with U = e
2πi
N or other equivalent discrete choices. This means that for N = 3, 4, 6

there is only one Kähler modulus parametrized by R, as in the 5D model on S1/Z2,

whereas in the degenerate case N = 2 there is in addition a complex structure mod-

ulus U . The orbifold generator acts on the coordinates as z → τz, with τ = e
2πi
N ,

and is also embedded into the gauge group through a matrix P such that PN = 1.

For simplicity, we consider only group actions in the gauge sector that correspond to

inner automorphisms of the gauge group G (see e.g. [16] for a discussion of various

orbifold gauge actions), in which P ∈ G (up to a constant overall phase for matter

fields).

The Lagrangian of the orbifold theory is constrained to be the sum of a bulk

contribution, which must be invariant under the full gauge group, and a set of contri-

butions localized at the fixed points of the orbifold action, which have to be invariant

only under the gauge group surviving at these points. The set of points left fixed by

an element gk of the orbifold group depends on k = 0, 1, . . . , N −1, and it is therefore

necessary to distinguish sectors labelled by different k. Since gN−k is the inverse of

gk, the fixed points in the sectors k and N − k are the same, and their number is

given by

Nk =

[

2 sin
(

πk

N

)

]2

. (2.3)

Moreover, the sector k = 0 is trivial and has of course no fixed points. The physically

distinct and relevant sectors are therefore labelled by k = 1, . . . , [N/2], where [. . .]

denotes the integer part. The general form of the effective Lagrangian can therefore

be parametrized as

L = L6 +
[N/2]
∑

k=1

Nk
∑

ik=1

δ(2)(z − zik)L4,ik , (2.4)

where L6 represents the bulk 6D Lagrangian and L4,ik the localized Lagrangians

at the Nk gk fixed points. Since L has to be g-invariant, and g acts non-trivially

4Our convention for the 6D metric is mostly minus.
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Figure 1: Form left to right, the T 2/Z3, T 2/Z4 and T 2/Z6 orbifolds and their covering tori. We

indicate with points of decreasing size the g, g2 and g3 fixed points respectively. The grey region

represents the fundamental domain of the orbifolds, and the segments delimiting it must be identified

according to: A ∼ D, B ∼ C.

on some fixed points, there are in general various non-trivial constraints among the

L4,ik ’s. Moreover, the orbifold structure respects a discrete translational symmetry

mapping g fixed points onto g fixed points.5 This implies that the Lagrangians L4,ik

are constrained to be all equal at fixed k and hence there are only [N/2] independent

localized terms appearing in (2.4).

Contrary to the more familiar cases of the Z2 and Z3 orbifolds, for the Z4 and

Z6 orbifolds there are points that are fixed under the action of some element gk of

the group, but not fixed under some subgroup of ZN , which permutes them. From

eq. (2.3) one finds that the Z4 orbifold has two g (and g3) fixed points and four g2 fixed

points: the two g fixed points, and two more points that are exchanged by the action

of g. The Z6 orbifold has one g (and g5) fixed point, the origin z = 0, three g2 and

four g3 fixed points. Besides z = 0, the remaining two g2 fixed points are exchanged

by the action of g3, whereas the remaining three g3 fixed points are exchanged by the

action of g2. We summarize in Fig. 1 the orbifold fixed-point structure of the Z3, Z4

and Z6 orbifolds, leaving aside the more familiar Z2 case.

In the following we shall restrict our study to the prototype models of gauge–

Higgs unification with a gauge group G = SU(3) that is broken to H = SU(2) ×
U(1) by the ZN orbifold projection. We denote by ta the SU(3) generators with

the standard normalization Tr tatb = 1
2
δab in the fundamental representation. The

unbroken generators in SU(2) and U(1) are t1,2,3 and t8. The broken generators in

SU(3)/[SU(2) × U(1)] are instead t4,5,6,7, and can be conveniently grouped into the

usual raising and lowering combinations t±1 = 1√
2
(t4 ± it5) and t±2 = 1√

2
(t6 ± it7). In

this basis, the group metric in the sector ±i ,±j is given by h+i ,−j = h+i ,−j = δij.

The most general way to realize the above breaking is obtained by embedding the

5This is true only in the absence of localized matter that is not uniformly distributed over the

fixed points or of discrete Wilson lines.
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orbifold twist in the gauge group through the matrix

P = τ
2 np( 1

3
+ 1√

3
t8)

=







τnp 0 0

0 τnp 0

0 0 1





 . (2.5)

The number np must be an integer and is defined only modulo N , so that there are

a priori N − 1 inequivalent embeddings.

The geometric part of the ZN action on a field is fixed by the decomposition of its

representation under the 6D SO(1, 5) Lorentz group in terms of SO(1, 3) × SO(2),

where SO(1, 3) is the 4D Lorentz group and SO(2) ≃ U(1) is the group of internal

rotations. The gauge part of the action on a field in a representation R of SU(3)

is instead given by the twist matrix (2.5) generalized to the representation R. This

fixes the ZN properties of any field, up to an arbitrary overall phase g, such that the

N -th power of the ZN action is trivial on all the components of the field. The orbifold

boundary condition of a generic bosonic or fermionic field component Φ, with U(1)

charge s under internal rotations and in the representation R of SU(3), is then given

by6

Φ(τz) = gB,F Rs PRΦ(z) . (2.6)

In this equation, PR denotes the twist matrix P in the representation R and Rs = τ s

is the Lorentz rotation associated to the geometric action of the twist. The overall

phases gB,F are such that gN
B = 1 for bosons and gN

F = −1 for fermions, since RN
s = ±1

in the two cases. It is convenient to define gF = gτ
1

2 , gB = g, so that g is an N -th

root of unity for both bosons and fermions. Correspondingly, there are in general N

different boundary conditions, associated to the N possible choices of g. They are

the ZN analogues of the more familiar even and odd parities appearing in Z2 models.

The expression of PR can be conveniently written as

PR = τ
2 np(

nR
3

+ 1√
3
t8R)

, (2.7)

where t8R is the Cartan generator t8 in the representation R and nR is an integer

number such that PN
R = 1. It can be written as nR = n1 − n2, where n1 and n2

are the two Dynkin labels of the representation R. Since the canonically normalized

abelian generator surviving the projection is QR = 1√
3
t8R, the matrix (2.7) gives a

phase τ 2 np(
nR
3

+q) on a component with U(1) charge q under the decomposition of the

representation R under SU(3) → SU(2)×U(1). The relevant information is listed in

Table 1 for the first few representations. In the following two subsections, we consider

in some more detail the decomposition of gauge and matter fields, as given by (2.6).

6Here and in the following, for simplicity, we do not explicitly indicate the dependence on z̄ and

on the 4D coordinates xµ.
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R Decomposition of R nR

3 2 1

6

⊕ 1− 1

3

1

6 3 1

3

⊕ 2− 1

6

⊕ 1− 2

3

2

8 30 ⊕ 2 1

2

⊕ 2− 1

2

⊕ 10 0

10 4 1

2

⊕ 30 ⊕ 2− 1

2

⊕ 1−1 3

Table 1: Decomposition of the most relevant SU(3) representations.

2.1. Gauge fields

The gauge fields AM transform as vectors under SO(1, 5) rotations and in the

adjoint representation under gauge transformations. In complex coordinates, the

decomposition of AM under SO(1, 3)× U(1) is very simple: we get a 4D vector field

Aµ with charge s = 0 and two 4D scalars Az and Az̄ with charges s = −1 and s = 1

respectively. The boundary conditions can be obtained from eq. (2.6) with g = 1.

The gauge part of the orbifold twist is diagonal if one switches from the standard basis

with components AMa to the creation–annihilation basis with components AM1,2,3,8,

AM±1 = 1√
2
(AM4 ∓ iAM5) and AM±2 = 1√

2
(AM6 ∓ iAM7). The final result is that

the various components of the gauge field AM =
∑

aAMa t
a satisfy twisted boundary

conditions with the following phases:

Aµ1,2,3,8 : 1 , Az1,2,3,8 : τ−1 , Az̄ 1,2,3,8 : τ+1 , (2.8)

Aµ±i : τ±np , Az±i : τ−1±np , Az̄±i : τ+1±np . (2.9)

The light modes of untwisted fields consist of the gauge bosons Aµ1,2,3,8 forming

the adjoint of the surviving gauge group, the scalar fields Az+i with their complex

conjugates Az̄−i forming a charged Higgs doublet under this group if np = 1 mod

N , and the scalar fields Az−i with their complex conjugate Az̄+i forming a conjugate

charged Higgs doublet if np = −1 mod N . Referring to the decomposition reported

in Table 1, the projection keeps the 30 and 10 components for 4D indices and some

numbers n and nc of the 2 1

2

and the 2̄− 1

2

components for internal indices, depending on

N and np = 1, . . . , N − 1. The possibilities for the numbers (n, nc) for the consistent

constructions labelled by the integers (N, np) are the following:

(n, nc) = (1, 1) : for (N, np) = (2, 1) ; (2.10)

(n, nc) = (1, 0) : for (N, np) = (3, 1), (4, 1), (6, 1) ; (2.11)

(n, nc) = (0, 1) : for (N, np) = (3, 2), (4, 3), (6, 5) ; (2.12)

(n, nc) = (0, 0) : for (N, np) = (4, 2), (6, 2), (6, 3), (6, 4) . (2.13)

It is therefore possible to construct models with two conjugate Higgs doublets (Z2),

8



a single Higgs doublet (Z3, Z4, Z6) or no Higgs doublets at all (Z4, Z6).

2.2. Matter fields

A 6D Weyl fermion Ψ± of definite 6D chirality decomposes under SO(1, 3)×U(1)

into two 4D chiral fermions with charges s = ±1
2
: Ψ± = (ψL,R)s= 1

2

⊕ (χR,L)s=− 1

2

,

where L,R denote the 4D chiralities. We thus see from (2.6) that any 6D Weyl

spinor gives rise to two 4D fermions of opposite 4D chiralities, twisted by g and gτ ,

times the gauge part of the twist. More generally, a 6D spinor field ΨR,χ6
of 6D

chirality χ6 = ±1 transforming in a representation R of the gauge group, gives rise to

different 4D spinor components ψq,χ4
with U(1) charge q and 4D chirality χ4 = ±1,

twisted by a phase:

ψq,χ4
: g τ

1−χ4χ6

2 τ 2 np(
nR
3

+q) . (2.14)

Depending on N and np, the various possible choices for g allow the zero modes

of different subsets of components to be preserved. We will not list here the many

possibilities, since they can be easily derived from the data reported in Table 1.

For scalar fields the analysis is simpler, since they are singlets under Lorentz trans-

formations and thus s = 0 in (2.6). The twist of a scalar field φR in a representation R
of the gauge group is only given by its gauge decomposition. For a generic component

φq with U(1) charge q, one has

φR,q : g τ 2 np(
nR
3

+q) . (2.15)

Notice that there is a one-to-one correspondence between the case of scalars and that

of spinors, since the additional phase τ
1−χ4χ6

2 arising for the latter is always an N -

th root of unity and can therefore be compensated by a different choice of g. It is

easy to verify that the zero mode of any component can always be preserved with a

suitable and unique choice of the phase g, both for scalars and for fermions. This is

an important property for model building.

2.3. Wave functions and spectrum

To construct wave functions, it is convenient to introduce two alternative real

coordinates w1 and w2, which are aligned with the natural cycles specified by the

complex structure U = U1+iU2 and defined by the relation z = 1√
2
(w1+Uw2). In this

way, w1 and w2 are independently periodic with period 2πR. For N = 3, 4, 6, where

U = τ , the ZN twist changes the point (w1, w2) into the point (−w2, w1+2τ1w2), where

τ1,2 denotes the real and imaginary parts of τ . For Z2, one has simply (w1, w2) →
τ(w1, w2). It will be convenient in the following to introduce a matrix notation, in

which the vector ~w is transformed into the vector Zt
N ~w. The matrix ZN is given by

ZN =

(

0 1

−1 2τ1

)

(2.16)
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for N = 3, 4, 6, while Z2 = −I. The basis of periodic functions on T 2 is then given

by the usual exponential functions f~n(~w) ∼ e
i
R

~n·~w. In terms of the complex variable

z, the normalized result is

f~n(z) =
1√
V
e

1√
2
(λ~nz−λ̄~nz̄)

, (2.17)

where V is the volume of the covering torus and

λ~n =
n2 − n1Ū

U2R
, λ̄~n =

n2 − n1U

U2R
. (2.18)

The ZN twist acts on fN and λ~n as

f~n(τkz) = fZk
N

~n(z) , λZk
N

~n = τkλ~n . (2.19)

It is easy to construct ZN covariant wave functions on T 2 by applying to the functions

(2.17) the orbifold projection weighted by an arbitrary ZN phase g. Defining for

convenience the quantity η~n =
(√

N
)−δ~n,~0 , these are given by

hg
~n(z) =

η~n√
N

N−1
∑

k=0

g−kfZk
N~n(z) , (2.20)

and, thanks to (2.19), satisfy the generic twisted boundary condition hg
~n(τz) = ghg

~n(z).

It is easy to verify that these functions are also orthonormal with respect to the

Kaluza–Klein (KK) momenta as well as the twist g. However, the functions hg
~n(z) are

not all independent: those with mode vectors connected by the orbifold action are

proportional to each other through a phase:

hg

Zk
N~n

(z) = gkhg
~n(z) . (2.21)

Correspondingly, the mode vectors ~n are not all independent but restricted to belong

to some fundamental domain, which can be determined as follows. The matrix (2.16)

represents the ZN action on the mode vector ~n for the torus wave functions. For

N 6= 2, it amounts to a rotation with phase τ on the complex plane u = −n1 + τn2.

This means that we can divide the space ZZ2 of all possible mode vectors ~n into

the origin, which is left fixed by ZN , plus N sectors Dk, with k = 0, . . . , N − 1,

mapped into each other by ZN . For N > 2, these domains can all be defined as

Dk = {~n ∈ ZZ2|(Zk
N~n)1 < 0, (Zk

N~n)2 ≥ 0}, whereas for N = 2, they are given by

D0 = {~n ∈ ZZ2|n1 > 0⊕ (n1 = 0, n2 > 0)}, D1 = {~n ∈ ZZ2|n1 < 0⊕ (n1 = 0, n2 < 0)}.
The independent wave functions in (2.21) are then associated to ~n ∈ D0 and the

origin, the ones associated to ~n ∈ Dk with k 6= 0 being the ZN -transformed of these.

It is now straightforward to characterize the spectrum of a generic T 2/ZN orbifold

model. A field φg(z) with generic twisted boundary conditions

φg(τz) = gφg(z) (2.22)

10



can be expanded in KK modes as

φg(z) = δg,1φ1
~0
h1

~0
(z) +

∑

~n∈D0

φg
~nh

g
~n(z) . (2.23)

The mass m~n of the ~n-mode is given by

m~n = |λ~n| =

√

n2
1 + n2

2 − 2U1n1n2

U2R
. (2.24)

It is important to notice that the spectrum of modes does not depend on g, apart

from the zero mode, which exists only if g = 1.

3. Higgs potential

The biggest problem in achieving gauge–Higgs unification in the minimal 5D case

is the absence of a tree-level Higgs potential, resulting in too small a Higgs mass.

This is the main reason for considering gauge–Higgs unification in 6D, where such

tree-level quartic term, arising from the gauge kinetic term, is naturally present. As

suggested by several authors [4, 5], its presence can help getting realistic EWSB

and Higgs masses. Most of the 6D models discussed so far, however, were based on

Z2 orbifold constructions that necessarily lead to two charged Higgs doublets. In

this case, the tree-level quartic term has a flat direction, just as in the MSSM, and

therefore fluctuations along this direction only have radiatively induced masses, which

in general tend to be too small.

We now focus our attention on T 2/ZN orbifold constructions with N > 2 leading

to one Higgs doublet. As we shall show below, these models have a non-vanishing

quartic tree-level potential, in contrast to the S1/Z2 orbifold. This term is responsible

for an important distinction between the interpretation of EWSB in T 2/ZN and S1/Z2

orbifolds. In the 5D model, the vacuum expectation value (VEV) of the Higgs field is a

flat direction of the classical potential and corresponds to a Wilson loop, which is also

equivalent to a twist in the boundary conditions around S1 [17]. In 6D models, on the

contrary, the VEV of the Higgs field is not a flat direction of the classical potential,

and such interpretation is missing. Indeed, there exist no continuous families of

solutions to the usual orbifold consistency conditions for Wilson loops [18] in the

case of SU(3) gauge theories on T 2/ZN with N > 2. Only discrete Wilson loops

are allowed. Nevertheless, the 5D and 6D models share the interesting property

that the Higgs dynamics is much more constrained than what is just implied by the

surviving gauge symmetry. This is a consequence of the non-linearly realized remnant

of the higher-dimensional gauge symmetry associated to parameters depending on the

internal coordinates, under which the Higgs field transforms inhomogeneously [19].
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Let us now compute the classical Higgs potential that arises for the single Higgs

models on T 2/ZN with N = 3, 4, 6. We choose np = 1, but the case np = N − 1

is perfectly similar up to an overall conjugation and therefore physically equivalent.

The classical Lagrangian of the 6D theory is given simply by L = −1
2
trF 2

MN , where

FMN = ∂MAN − ∂NAM − ig6 [AM , AN ]. The Lagrangian for the zero modes A0
µ, A0

z

and A0
z̄ is easily obtained by integrating over the internal torus. The result is given

by

L = −1

2
trF 02

µν + 2 tr |DµA
0
z|2 − g2

4 tr [A0
z, A

0
z̄]

2 , (3.1)

where g4 = g6/
√
V is the gauge coupling of the 4D effective theory below the compact-

ification scale, F 0
µν = ∂µA

0
ν−∂νA

0
µ−ig4[A

0
µ, A

0
ν ] is the field strength of the massless 4D

gauge bosons, and DµA
0
z,z̄ = ∂µA

0
z,z̄ − ig4[A

0
µ, A

0
z,z̄] is the covariant derivative on the

Higgs field. The three weak gauge bosons and the hypercharge gauge boson are iden-

tified as Wµa = A0
µa for a = 1, 2, 3 and Bµ = A0

µ8. The zero modes of Aµ =
∑

aAµat
a,

where a = 1, 2, 3, 8, are then given by

A0
µ =

1

2







W 3
µ + 1√

3
Bµ

√
2W+

µ 0√
2W−

µ −W 3
µ + 1√

3
Bµ 0

0 0 − 2√
3
Bµ





 . (3.2)

Similarly, the two complex components of the Higgs doublet are hu = A0
z+1 and

hd = A0
z+2, and their complex conjugates are given by h∗u = A0

z̄−1 and h∗d = A0
z̄−2.

The zero modes of Az =
∑

iAz+it
+i and Az̄ =

∑

iAz̄−it
−i are thus given by

A0
z =

1√
2







0 0 hu

0 0 hd

0 0 0





 , A0
z̄ =

1√
2







0 0 0

0 0 0

h∗u h∗d 0





 . (3.3)

Substituting these expressions in the Lagrangian, and switching from the SU(3)

to an SU(2) notation, we finally find:

L = −1

2
trFW2

µν − 1

4
FB2

µν +
∣

∣

∣

(

∂µ − ig4Wµa
τa
2
− ig4 tan θW

1

2
Bµ

)

h
∣

∣

∣

2 − Vclass(h) , (3.4)

where tan θW =
√

3 and

Vclass(h) =
g2
4

2
|h|4 . (3.5)

The weak mixing angle arising in this construction is too large, but there are various

ways of solving this problem, most notably by adding extra U(1) gauge fields.

Quantum fluctuations induce a correction to the classical potential (3.5) and can

trigger radiative symmetry breaking. The quantum effective potential can only de-

pend on gauge-invariant quantities. These can be local or non-local in the compact

12



dimensions. Non-local operators involve Wilson lines wrapping around the internal

space and are generated with finite coefficients whose size is controlled by the com-

pactification scale 1/R. The local and potentially divergent operators contributing to

the Higgs potential arise from the non-derivative part of Fzz̄, like the classical quartic

term. Gauge invariance allows two possible classes of local operators of this kind: even

powers of FMN in the bulk or arbitrary powers of Fzz̄ localized at the orbifold fixed

points. In general, such terms will be generated at the quantum level with divergent

coefficients. At one-loop order, the bulk operators that can lead to divergences in the

Higgs potential are the gauge kinetic term F 2
MN and a quartic coupling F 4

MN , leading

to quadratic and logarithmic divergences to V (h) respectively. Localized operators

are of the form g2p
4 F

p
zz̄, where p is any positive integer. Quadratic and logarithmic

divergences can arise from the tadpole operator p = 1 and the kinetic operator p = 2

respectively.

Since the quadratic bulk divergence gives rise only to a wave-function renormal-

ization, we see that the only quadratic divergence to the Higgs potential comes from

the localized tadpole operator Fzz̄. In general, the latter induces a modification to

the background and, in its non-abelian part, possible mixings between the Higgs and

its KK modes, aside from a quadratically divergent mass term for the Higgs field

h. In the rough approximation of neglecting the backreaction induced by the modi-

fied background and the KK mixings, effects that we will consider in section 5, and

also neglecting all the logarithmic divergences, we see that the leading terms in the

one-loop effective potential for the Higgs are

Vquant(h) = −µ2|h|2 + λ|h|4 , (3.6)

where µ2 is a radiatively generated and possibly divergent mass term and λ = g2/2

is the tree-level quartic term. Assuming µ2 > 0 so that EWSB can occur, we have

〈|h|〉 = v/
√

2 with v = µ/
√
λ. At the minimum,

mH =
√

2µ =
√

2 v
√
λ

mW =
1

2
g v . (3.7)

The ratio betweenmH andmW is therefore predicted in a completely model-independent

way to be
mH

mW
=

2
√

2λ

g
= 2 . (3.8)

Extra U(1) fields, possibly needed to fix the weak-mixing angle to the correct value,

do not modify eq. (3.8). The main radiative correction to eq. (3.8) arises from the

Higgs wave-function distortion induced by the tadpole operator Fzz̄, as explained in

section 5. This effect can be estimated by Näıve Dimensional Analysis (NDA) to
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give O(1) corrections to eq. (3.8). In spite of this, the value of the Higgs mass is

significantly increased with respect to the previously considered 5D models or Z2

orbifold constructions.

4. Divergent localized tadpole

We have seen that gauge invariance allows a localized interaction that is linear

in the field strength, in addition to the universally allowed higher-order interactions

involving even powers of the field strength. The localized interaction is particularly

relevant, since it involves a mass term for the Higgs fields [11]. It has the form7

Ltad = −i
[N/2]
∑

k=1

Ck

Nk

Nk
∑

ik=1

δ(2)(z − zik)F
8
zz̄(z) , (4.1)

where Ck are real coefficients of mass dimension 1 and F 8
zz̄ is the field strength of the

U(1) component left unbroken by the orbifold breaking, which in terms of 6D fields

reads

F 8
zz̄ = ∂zA

8
z̄ − ∂z̄A

8
z + g6f

8bcAz bAz̄ c . (4.2)

In Z2 orbifold models, the parity symmetry z ↔ z̄ can be implemented and it forbids

the appearance of the operator (4.2), which is odd under this discrete symmetry

[6, 11]. This parity can be generalized to ZN orbifolds, with N > 2, only if the twist

matrix P is such that P 2 = I. The allowed form of the tadpole operator is then

Im TrPFzz̄, which automatically vanishes whenever P 2 = I. More precisely, we will

see that the term associated to k in (4.1) can be written as Im TrP kFzz̄, implying

that the tadpole vanishes in the sectors k such that P 2k = I, when the above Z2

symmetry can be implemented. Notice that projections that leave only one Higgs

doublet do not satisfy P 2 = I and hence are generally affected by tadpoles. We

verify this statement by performing a detailed calculation of the coefficients Ck for

all ZN models at one-loop order. In particular we compute the contribution to the

tadpole arising from gauge (and ghost) fields, and from an arbitrary bulk scalar or

fermion in a representation R of SU(3). Possible localized boundary fields cannot

minimally couple to the fields appearing in (4.2), because of the residual non-linearly

realized gauge symmetries that are unbroken at the orbifold fixed points [19]. We

therefore consider in the following 6D bulk fields only. This computation is also

useful to understand whether and under what circumstances an accidental one-loop

cancellation is possible.

7Abelian gauge fields that are present already before the orbifold projection and are unbroken

can also develop a localized divergence term as in (4.1), but in this case the associated divergent

mass term for even scalars, the last factor in (4.2), is absent.

14



The computation of Feynman diagrams on an orbifold can be nicely mapped to

that on the corresponding covering torus by using a mode decomposition such that

the effect of the orbifold projections amounts only to a non-conservation of the KK

momentum in non-diagonal propagators,8 along the lines of [20]. Let us illustrate

the formalism for a generic field Φ(z) on a T 2/ZN orbifold. The ZN group acts on Φ

as described in (2.6), through the operator P = gRsPR, on both Lorentz and gauge

indices: Φ(τz) = PΦ(z). We define the mode expansion of Φ as

Φ(z) ≡
∑

~n

Φ~nf~n(z) , (4.3)

where f~n is the basis of functions on T 2 defined in (2.17). The KK modes in (4.3),

contrary to those appearing in (2.23), provide a redundant parametrization of Φ, since

they are not all independent, owing to the condition (2.6). Their propagators will

then be non-diagonal in the KK momentum space.

It is convenient to express Φ in terms of an unconstrained field Φ̃ on T 2 with the

same quantum numbers as Φ , so that (2.6) is automatically satisfied:

Φ(z) =
1

N

N−1
∑

k=0

PkΦ̃(τ−kz) . (4.4)

The propagator of Φ can then be written in terms of the propagator of Φ̃ as9

〈Φ(z1)Φ
†(z2)〉 =

1

N2

N−1
∑

k,l=0

Pk〈Φ̃(τ−kz1)Φ̃
†(τ−lz2)〉(P†)l

=
1

N

N−1
∑

k=0

Pk〈Φ̃(τ−kz1)Φ̃
†(z2)〉 , (4.5)

where the last simplification in the above expression is a consequence of the fact that

the transformation Φ̃(z) → P−kΦ̃(τkz) is by assumption a symmetry of the action.

The propagator of Φ̃ is the standard propagator on the torus and can be written as

〈Φ̃(z1)Φ̃
†(z2)〉 ≡

∑

~n

G̃~n f~n(z1 − z2) ,

where G̃~n denotes the standard form of the propagator in momentum space, and the

torus periodicity conditions result only in the quantization of the KK momenta in the

8An alternative procedure to compute Feynman diagrams on orbifolds is obtained by directly

considering physical modes only, as derived in section 2. In this case, the propagators for all fields

are diagonal in the KK momenta and the momentum non-conservation arises from the interaction

vertices. As a further consistency check of our results, we have also computed both the 1- and

2-point functions in this way and found perfect agreement between the two methods.
9We write the propagator in the form of a correlator among Φ and its hermitian conjugate Φ†,

but our formalism clearly applies to real fields as well.
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~n Z−k
N ~n

B A
k =

1

N

[

Pk · G̃~n

]

A B

Figure 2: Feynman rule for the propagators on an orbifold. In the figure, A, B are a generic set

of indices labelling the state and k = 0, . . . , N − 1 is the possible twist of the propagator.

~n1, A1

~n2, A2

~nK , AK

V = V{A1, ~n1},..., {AK , ~nK}Φ{A1,~n1} . . .Φ{AK ,~nK} ∼

Figure 3: The diagrammatic representation of a generic effective vertex V .

internal directions. Recalling that the orbifold action on the KK momenta is given

by (2.19), we then find

〈Φ(z1)Φ
†(z2)〉 =

1

N

N−1
∑

k=0

∑

~n

Pk G̃~n fZ−k
N ~n(z1)f

†
~n(z2) , (4.6)

whose Fourier transform is

〈Φ~mΦ~n
†〉 =

1

N

N−1
∑

k=0

PkG̃~n δ~m, Z−k
N

~n . (4.7)

Equation (4.7) shows that the propagator on an orbifold can be written as the

sum of N propagators, of which all but the first violate momentum conservation. Any

internal line of a Feynman diagram is then the sum of the “k” propagators shown in

Fig. 2, in which an incoming momentum ~n is changed into an outgoing one Z−k
N ~n.

When using the Feynman rule shown in Fig. 2, an orientation of the propagator is

needed so as to distinguish incoming and outgoing lines. If the field is complex this

orientation is naturally provided; if it is real, one orientation has to be chosen to

apply the rule of Fig. 2, but clearly the result does not depend on this choice.

In this approach, all the interaction vertices conserve the KK momenta and any

diagram can thus be computed by simply applying the usual Feynman rules, inserting

the orbifold propagator as shown in Fig. 2. The computation is, however, simplified

by noting that any interaction vertex has to be ZN -invariant. Its action on a set

of K fields, with modes Φ~nf
(f = 1, . . . , K), is Φ~nf

→ Pk
f ΦZk

N
~nf

. This leads to the

following relation, valid for any interaction vertex V (see Fig. 3):

V{B1, Z−k
N

~n1},..., {BK , Z−k
N

~nK}

[

Pk
1

]

B1A1

. . .
[

Pk
K

]

BKAK

= V{A1, ~n1},..., {AK , ~nK} , (4.8)
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k2

k1 kK~n1, a1

~n2, a2

~nK , aK

= N ×
k2

0 kK~n1, a1

~n2, a2

~nK , aK

Figure 4: Equivalence between interaction vertices on a ZN orbifold.

where Af , Bf represent both Lorentz and gauge indices of the various fields. Thanks

to (4.8), we notice that (see Fig. 4) if K propagators are attached to a vertex, we do

not have to sum over all their K independent twists, as one of them can be set to

zero, simply giving an extra factor of N . Notice that there is no need for the vertex

V to be elementary, i.e. to appear in the tree-level action. This general result turns

out to be useful in computing the Higgs 2-point function. In this case it also holds

for on-shell external lines, because ~n = ~0 is a fixed point of ZN , and P acts as the

identity on the physical ~0 modes.

We extract the coefficients Ck by computing the 1-point function of all the KK

modes of A8
z. We then work out also the 2-point function for the zero-mode h of the

Higgs field, defined as in (3.3), to extract its finite non-local mass terms and to check

the 1-point function computation. In order to find an expression that can be directly

compared with the computation of 1- and 2-point functions for KK modes, we need

to work out more explicitly eq. (4.1). Using the mode expansion (4.3), we easily find:

∫

dz2Ltad = −
[N/2]
∑

k=1

Ck

[

∑

~n

1

Nk

Nk
∑

ik=1

f~n(zik)
(

pz,~nA
8
z̄,~n − pz̄,~nA

8
z,~n

)

+
g4√
V

(

if 8+i−j
)

hih
†
j

]

+ . . . , (4.9)

where pz,~m = i√
2
λ~m, pz̄, ~m = − i√

2
λ̄~m are the internal KK momenta, with λ~m, λ̄~m as in

(2.18), and the dots stand for all the remaining quadratic couplings between all the

KK excitations of Az,+i and Az̄,−j. Using the identity

1

Nk

Nk
∑

ik=1

f~n(zik) =
1√
V
δ(1−Zk

N
)−1~n∈ZZ2 , (4.10)

valid for all the T 2/ZN orbifolds, the contributions of the two terms in (4.9) to the

1- and 2-point functions are found to be

〈A8
z,~n〉 = ipz̄,~n

[N/2]
∑

k=1

Ck√
V
δ(1−Zk

N
)−1~n∈ZZ2 , (4.11)
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k

~n

~p Z
−k
N ~p

z, a

+

k

~n

~p Z
−k
N ~p

z, a

Figure 5: The gauge and ghost contributions to the 1-point function 〈Aa
z,~n〉.

〈hih
†
j〉 = g4f

8+i−j
[N/2]
∑

k=1

Ck√
V
. (4.12)

Notice that the Higgs mass term arising from (4.12) is sensible only to the sum of the

tadpole coefficients Ck.

4.1. 1-point function

According to the considerations made at the beginning of this section, all the

Feynman rules for the vertices are the standard ones, whereas the propagator has to

be replaced (see Fig. 5) by its twisted version, as in Fig. 2. In the following we adopt

the Feynman gauge, obtained through the choice ξ = 1 in the general gauge-fixing

term

Lgf = − 1

2ξ

8
∑

a=1

[

∂µA
µ,a − ξ(∂zA

a
z̄ + ∂z̄A

a
z)

]2

. (4.13)

By 4D Lorentz invariance, a tadpole can be generated only for the field com-

ponents Aa
z and Aa

z̄ . An explicit computation of this tadpole shows that it has the

form:

〈Aa
z,~n〉 = g4

N−1
∑

k=0

ξ̂a
k

∑

~m

∫ d4p

(2π)4

pz̄, ~m

p2 − 2 |pz,~m|2
δ~n,(1−Z−k

N )~m , (4.14)

where ξ̂a
k are numerical coefficients depending on the kind of field running in the loop

and p2 = pµp
µ is the 4D momentum squared. The sector k = 0 never contributes.

For the sectors k 6= 0, the δ-function in KK space relates the internal momenta of

the virtual state to that of the external particle: pz̄, ~m = (1 − τk)−1pz̄,~n. We can then

perform the sum over m, and we are left with the condition (1 − Z−k
N )−1~n ∈ ZZ2.

Therefore, the quadratically divergent part of eq. (4.14) has the form of eq. (4.11).

This condition can easily be shown to be equivalent to (1 − Zk−N
N )−1~n ∈ ZZ2, so that

in eq. (4.14) the sector N − k contributes just as the sector k. The two contributions

of these conjugate sectors can be paired, as expected, and simply yield twice the
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real part of one of them (with the obvious exception of the sector k = N/2 that,

if present, must be counted only once). Finally, defining the new coefficients ξa
k =

−21−δk,N/2τ−k/2N
−1/2
k ξ̂a

k , eq. (4.14) can be rewritten in the more suggestive form

〈Aa
z,~n〉 = −g4D(Λ)

[N/2]
∑

k=1

pz̄,~n δ(1−Zk
N )−1~n∈ZZ2 Im ξa

k + . . . , (4.15)

where

D(Λ) = i
∫

d4p

(2π)4

1

p2
=

1

16π2
Λ2 . (4.16)

The dots in (4.15) stand for additional logarithmically divergent and finite subleading

corrections. These corrections are very similar to those found in [21] for the FI term

in 5D SUSY theories on S1/(Z2 × Z′
2), and are associated to interactions involving

additional internal derivatives ∂z∂z̄ acting on F 8
zz̄. Notice also that in the presence of

an additional bulk mass term M for the fields running in the loop, which is possible

for instance for scalar fields, eq. (4.16) gets modified through the simple substitution

Λ2 → Λ2 − 2M2 ln(Λ/M).

The contributions to ξk
a of the gauge and ghost fields in the adjoint representation,

and of complex scalar or Weyl spinor fields in an arbitrary representation R and with

overall twist g, are found to be:

(ξa
k)gauge =

−1

NN
1/2
k

[

5(τ
k
2 + τ−

k
2 ) − (τ

3k
2 + τ−

3k
2 )
]

Tradj

[

P k ta
]

, (4.17)

(ξa
k)scalar =

−2

NN
1/2
k

gk (τ
k
2 + τ−

k
2 )TrR

[

P k ta
]

, (4.18)

(ξa
k)fermion = (4)

21−δk,N/2

NN
1/2
k

(gτ
1

2 )k TrR
[

P k ta
]

, (4.19)

where (ξa
k)gauge also contains the ghost contribution. The gauge trace appearing in

the above coefficients is as expected to differ from zero only for a = 8, reflecting

the fact that only a U(1) tadpole is allowed by the gauge symmetry. It is easily

evaluated by recalling the definition of the twist matrix PR, eq. (2.7), and exploiting

the decomposition of the representation R under SU(3) → SU(2) × U(1). Denoting

by dRr and qRr the dimensionality and the charge under QR = 1√
3
t8R of the r-th

component Rr in the decomposition R → ⊕rRr, we find:

TrR
[

P kt8
]

=
√

3
∑

Rr

dRrqRrτ
2np(

nR
3

+qRr )k . (4.20)

Notice that the gauge contribution to the tadpole vanishes at 1-loop order for the Z2

case. The same happens for any scalar or fermion contribution in a real representation.
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This can be seen by using the relation (valid for any ZN orbifold):10

TrR
[

P kt8
]

= −TrR
[

P−kt8
]

, if R real. (4.21)

This result is in agreement with that found in [11], where it was also generalized to the

2-loop case. On the contrary, for N = 3, 4, 6, there is always some tadpole coefficient

that is non-vanishing for the single-Higgs projections. The tadpole can only vanish

for the zero-Higgs cases N = 4, np = 2 and N = 6, np = 3, since they correspond to

vanishing Im Tradj

[

P k ta
]

.

The fermion contribution (4.19) has a structure that resembles that of the 4D

mixed U(1)-gravitational anomaly induced at the fixed points by 6D Weyl fermions.

The structure of this anomaly can be understood using Fujikawa’s approach to anoma-

lies, as was done in [22] for string-derived orbifold models. The total contribution to

localized mixed U(1)-gravitational anomalies from a 6D fermion is proportional to
∑[N/2]

k=1 Nk Im (ξ8
k)fermion. This expression can be written as a projector over massless

4D fermions, weighted by their 4D chirality, and is thus proportional to the sum over

U(1) charges of the 4D chiral fermions. Notice, however, that 6D fermions always

contribute to the tadpole with the same sign, independently of their 6D chirality, as

already noted for the Z2 case in [11]. Since a flip of the 6D chirality amounts to a

flip of the 4D one, this implies that the sum over all possible fermion contributions

to the tadpole does not coincide with the total mixed U(1)-gravitational anomaly

of the 4D fermion spectrum, even when the factor Nk can be factorized out of the

trace, as in the Z2 and Z3 models. This means that even when the scalar and gauge

contribution to the tadpole vanish, the requirements of vanishing integrated tadpole

and U(1)-gravitational anomaly cancellation are in general independent constraints.

In order to relate the coefficients ξ8
k to the coefficients Ck appearing in (4.1), we

must compare eq. (4.15) with eq. (4.11), which have as expected the same structure.

The result is

Ck = g4

√
V D(Λ) Im ξ8

k . (4.22)

We summarize in Table 2 the contribution of a Weyl fermion to Ck for all possible

twists and for the first few SU(3) representations. Notice that the contribution of a

fermion with twist g in the conjugate representation R̄ is equal to that of a fermion

twisted by ḡτ̄ in the representation R. Similarly, a scalar in the R̄ with twist g con-

tributes as one in the R with conjugate twist ḡ. The sum over all possible twists for

any scalar or fermion contribution always vanishes, since in this case one reconstructs

the matter content that would appear on the covering torus, which cannot give rise

to any localized divergence. We see that for N = 3, 4, 6 and for any choice of fermion

10Actually the scalar contribution in the Z2 model vanishes for any representation, not only for

real ones.
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representations, it is impossible to cancel the total (gauge+ghost+fermion) one-loop

contribution to each tadpole coefficient11, although one can obtain their global can-

cellation, namely the cancellation of their integral over the compact space
∑

k Ck = 0.

This seems to be possible, without scalars, only for Z4 with an odd number of 6D

Weyl fermions in suitable representations. If one includes scalars, an accidental local

one-loop cancellation of the tadpole is possible, but in this case one needs a symmetry

to protect the mass M of the 6D scalars, which is otherwise expected to be at the

cut-off scale Λ, and reintroduce a quadratic sensitivity to the latter.

Z2 1 τ

c1(3) −4 4

c1(6) 4 −4

c1(8) 0 0

c1(10) −12 12

Z3 1 τ τ 2

c1(3) −4 −4 8

c1(6) −20 16 4

c1(8) 12 −24 12

c1(10) 12 12 −24

Z4 1 τ τ 2 τ 3

c1(3) 0 −8 0 8

c1(6) −24 −16 24 16

c1(8) 24 −24 −24 24

c1(10) −48 24 48 −24

c2(3) −4 4 −4 4

c2(6) 4 −4 4 −4

c2(8) 0 0 0 0

c2(10) −12 12 −12 12

Z6 1 τ τ 2 τ 3 τ 4 τ 5

c1(3) 4 −4 −8 −4 4 8

c1(6) −4 −32 −28 4 32 28

c1(8) 36 0 −36 −36 0 36

c1(10) −60 −84 −24 60 84 24

c2(3) −4 −4 8 −4 −4 8

c2(6) −20 16 4 −20 16 4

c2(8) 12 −24 12 12 −24 12

c2(10) 12 12 −24 12 12 −24

c3(3) −4 4 −4 4 −4 4

c3(6) 4 −4 4 −4 4 −4

c3(8) 0 0 0 0 0 0

c3(10) −12 12 −12 12 −12 12

Table 2: The contribution to the tadpole coefficients Ck from Weyl fermions for various representa-

tions and all choices of the phase g. We report the quantity ck =
√

3N Im[ξ8

k], which for the gauge

contribution is given by c1 = 0 for Z2, c1 = −21 for Z3, c1 = −36 and c2 = 0 for Z4, and c1 = −45,

c2 = −21 and c3 = 0 for Z6. In all cases, we are considering the projection with np = 1, giving

single-Higgs models for N 6= 2.

4.2. 2-point function

We now compute the one-loop 2-point function for the Higgs field, at zero external

4D and KK momentum. Contrarily to the 1-point function, which we have computed

11Our result for the gauge+ghost one-loop contribution to the tadpole in the Z4 model is in

disagreement with the result of [6], where it was found to vanish.
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Figure 6: The gauge and ghost contributions to the 2-point function 〈hih
†
j〉.

for any external KK momentum, this correlation gives us information only on the form

of the operator (4.1) integrated over the compact space (see eq. (4.12)). Nevertheless,

it provides an important independent check of the 1-point function computation and

also allows the extraction of the finite non-local contributions to the Higgs mass.

Thanks to the property displayed in Fig. 4, each of the diagrams contributing

to the one-loop Higgs mass contains only one twisted propagator with twist k. The

diagrams with k = 0 give a finite contribution, which reproduces up to a 1/N factor

the result that would be obtained for a theory on the covering torus T 2. The remaining

contributions arising from the diagrams with the insertion of a propagator with k 6= 0

are instead divergent. Owing to momentum conservation at the vertices, the internal

KK momentum in the twisted internal lines has to vanish (see Fig. 6). The general

structure of the Higgs 2-point function is then given by:12

〈hi h
†
j〉 = g2

4f
+i−j

8 ξ8
divD(Λ) + ig2

4 δij ξ
8
fin F (R) , (4.23)

with D(Λ) as in (4.16) and

F (R) = i
∫ d4p4

(2π)4

∑

~n∈ZZ2

p2

(p2 − 2|pz,~n|2)2
=

U2

4π5R2

∑

~n 6=~0

|n1 + Un2|−4 . (4.24)

It is straightforward to compute the diagrams controlling the divergent part. Note

that ghosts do not contribute, because their coupling to the Higgs is proportional to

the KK momentum. Thanks to the identities

TrR
[

t+it−jP k
]

= τ lTrR
[

t−jt+iP k
]

,

TrR
[

t−jt+iP k
]

= −if +i−j
8

1

1 − τ l
TrR

[

t8P k
]

, (4.25)

the result can be rewritten as

ξ8
div =

[N/2]
∑

k=1

Im ξ8
k , (4.26)

12Equation (4.23) is valid also for the Z2 model, where two Higgs fields are present. In this case,

there are additional 2-point correlators that we neglect. See e.g. [5].
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where the ξ8
k’s turn out to precisely match the expressions (4.17)–(4.19) extracted

from the 1-point function computation. This result represents a non-trivial check of

that computation. Indeed, comparing eq. (4.23) with eq. (4.12), we deduce that

[N/2]
∑

k=1

Ck = g4

√
V D(Λ) ξ8

div (4.27)

which is compatible with the result in eq. (4.22) thanks to the relation (4.26).

The diagrams contributing to the finite part can be computed as well, and the

coefficients of the finite part are found to be given by:

(ξ8
fin)gauge = 2

4

N
C(Adj) , (4.28)

(ξ8
fin)scalar =

4

N
C(R) , (4.29)

(ξ8
fin)fermion = −2

4

N
C(R) , (4.30)

in terms of the quadratic Casimir C(R) of the representation R, defined by the

relation TrR
[

tatb
]

= C(R)δab, so that C(Fund) = 1
2

and C(Adj) = 3.

5. Phenomenological implications

In sections 3 and 4 we have shown how 6D gauge theories on orbifold models

can lead to a beautiful prediction for the Higgs mass, but at the same time they

are affected by a quadratic divergence arising from a localized tadpole term. It is

thus natural to try to understand whether and to what extent such models can be

considered for realistic model building.

One of the main generic problems in models with gauge–Higgs unification is how

to accommodate the standard matter fields. A possibility is to introduce them at the

fixed points of the orbifold. Standard Yukawa couplings cannot be directly introduced,

because they would violate the higher-dimensional symmetry. However, effective non-

local Yukawa couplings can be generated by introducing mixings between the matter

fields and additional heavy fermions in the bulk, which are then integrated out [6, 7].

In this situation, the localized matter field will in general influence the one-loop

tadpole (4.2), but since this requires mixing insertions, only logarithmic divergences

can be induced. The weak mixing angle, whose value in the basic SU(3) model is too

large, can be fixed by introducing additional U(1) gauge fields in the bulk (see e.g.

[5, 7]), as mentioned in section 2.

The real issue is that the presence of the quadratically divergent term (4.1) can

destabilize the electroweak scale. It must therefore be understood how much (if any)

progress has been achieved with respect to the SM, as far as the little hierarchy
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problem is concerned. The abelian and non-abelian components of the localized

operator (4.1) induce respectively a non-trivial background for the field A8
z and a

mass term for the Higgs doublet A−i
z . The latter can generate not only a mass term

for the 4D Higgs field, but also mixings between all its KK partners. These mixings

can be neglected only if their magnitude is much smaller than 1/R, the typical mass

of KK modes. In our case, Ck > 1/R (see below) and the effect of all these mixings,

as well as that of the non-trivial background for A8
z, must be taken into account. In

order to see if and how much the EWSB scale is sensitive to this divergence, one has

to compute the background value of A8
z and study the quantum fluctuations around

it, to get the physical masses of the various fields, in particular for A−i
z . Luckily,

a similar analysis has already been performed in [15], where the effect of localized

FI terms in 6D orbifold models has been studied (see also [23, 24]). As already

mentioned, the tadpole (4.1) can be interpreted as a FI term in SUSY theories; this

suggests a correspondence that allows a study of its physical consequences even in our

non-SUSY set-up. The background induced by the tadpole can be explicitly found

as follows. If one sets to zero all 4D gauge fields, the effective potential one obtains

for the scalar fields Aa
z , in the unitary gauge ξ → ∞ in (4.13), can be written, up to

some irrelevant constant terms, as

V =
1

2

3
∑

a=1

|F a
zz̄|2 + |F−i

zz̄ |2 +
1

2

∣

∣

∣F 8
zz̄ − i

[N/2]
∑

k=1

Ck

Nk

Nk
∑

ik=1

δ(2)(z − zik)
∣

∣

∣

2
. (5.1)

The potential (5.1) is a sum of squares and thus, as happens for the D-term potential

of SUSY theories, configurations where it vanishes are automatically consistent clas-

sical backgrounds. In the particular case where the tadpole globally vanishes, that is
∑

k Ck = 0, the background value of the fields can be determined by proceeding as in

[15]. The result is that 〈A8
z〉 = i∂zW , where the function W is a linear combination

of scalar Green functions on the internal T 2. The existence of a zero-mode solution

A−i
z,0 for the field A−i

z in the presence of this background is ensured by the existence

of a solution to the first-order equation

F−i
z̄z =

(

∂z̄ + ig6 tan θW
1

2
〈A8

z〉
)

A−i
z,0 = 0 . (5.2)

We refer the reader to [15] for a detailed analysis of the profile of the zero mode wave

function in the internal space. The above reasoning shows that a globally vanishing

tadpole does not give rise to any quadratic divergence in the Higgs mass parameter

µ2 appearing in (3.6). In other words, a globally vanishing tadpole is harmless for

EWSB, which is governed by the finite non-local contributions to the 2-point function,

proportional to (4.24), which for simplicity we have neglected in these simple lines of

arguments. In the presence of globally vanishing one-loop tadpole, the little hierarchy
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problem is then solved. The non-trivial profile for the Higgs field, however, induces

large corrections to (3.8), since this ratio depends on the integral of the Higgs profile

in the internal directions. As mentioned in section 3, such corrections are estimated

to be of O(1) and thus might significantly alter the tree-level result (3.8).

To be more quantitative, we can rely on the higher-dimensional generalization

of the NDA [25]. We denote in short by l4 = 16π2 and l6 = 128π3 the 4D and

6D loop factors. The relation between the cut-off scale Λ and the compactification

scale 1/R is then estimated to be Λ ∼ g−1
4 (2πR)−1

√
l6, which for the EW coupling

yields Λ ∼ 10/R. In this way we obtain an estimate for the tadpole coefficient Ck

that is in agreement with the direct one-loop result reported in (4.22) and of order

l6/(2πRg4l4) > 1/R, as mentioned. On the other hand, the value of µ2 in eq. (3.6)

induced by finite non-local corrections is of order µ2 ∼ g2
4/(l4R

2), and from (3.7)

one estimates 1/R ∼ 1 TeV and Λ ∼ 10 TeV, which are compatible with present

experimental bounds in a natural way. On the other hand, for a globally non-vanishing

tadpole, it is reasonable to expect to have effectively µ2 ∼ g2
4Λ

2/l4. From (3.7) one

now estimates Λ ∼ 1 TeV, corresponding to 1/R ∼ 100 GeV. The amount of fine-

tuning that is needed in this case is about the same as in the SM, and there is no

progress concerning the little hierarchy problem.

Summarizing, we have shown that there exists a class of 6D ZN orbifold models

with gauge–Higgs unification that lead to a single Higgs doublet with the tree-level

prediction mH = 2mW , and for which the EWSB scale is sufficiently stable, provided

that the one-loop integrated tadpole vanishes. Although we have not provided in this

paper a complete and realistic 6D model with gauge–Higgs unification, which would

require in particular to find an anomaly-free fermion spectrum with a globally vanish-

ing tadpole, we think that it will be very interesting to analyse the phenomenological

aspects of the single Higgs T 2/ZN models discussed in this paper.
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