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Abstract

The most general black M5-brane solution of eleven-dimensional supergravity (with
a flat R

4 spacetime in the brane and a regular horizon) is characterized by charge,
mass and two angular momenta. We use this metric to construct general dual models
of large-N QCD (at strong coupling) that depend on two free parameters. The mass
spectrum of scalar particles is determined analytically (in the WKB approximation)
and numerically in the whole two-dimensional parameter space. We compare the mass
spectrum with analogous results from lattice calculations, and find that the super-
gravity predictions are close to the lattice results everywhere on the two dimensional
parameter space except along a special line. We also examine the mass spectrum of
the supergravity Kaluza–Klein (KK) modes and find that the KK modes along the
compact D-brane coordinate decouple from the spectrum for large angular momenta.
There are however KK modes charged under a U(1) × U(1) global symmetry which
do not decouple anywhere on the parameter space. General formulas for the string
tension and action are also given.
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1 Introduction

The conjectured dualities between gauge and string theories [1] have been recently exploited
in [2]-[9] to construct and investigate models of pure QCD in 3+1 dimensions, whose main
component is the black M5-brane solution of eleven-dimensional supergravity, which near the
branes corresponds to an anti-de Sitter (AdS) space. The no-hair theorem implies that the
most general model of this kind that can be constructed (i.e. based on a regular geometry
with M5-brane charge) is obtained from a rotating black M5-brane parameterized by its
charge, mass and two angular momenta. The scope of this paper is to calculate the mass
spectrum of scalar modes of this general model in the supergravity approximation, and study
its behavior in the parameter space. The parameter space is four dimensional, but the mass
parameter can be set to 1 by a choice of mass units; the charge is related to the ’t Hooft
coupling λ = g2N (where g is the Yang–Mills coupling and N is the number of branes).
It is assumed that λ is very large so that the radius of curvature is much larger than the
string scale; this is necessary for supergravity to be a good approximation to string theory
(M theory). In this regime glueball masses are independent of λ, so what remains is a two-
dimensional space spanned by the angular momentum parameters. When one of the angular
momenta vanishes, the model reduces to the one angular momentum model examined in
Refs. [6, 8]. In our investigation we will use both analytic methods (within the WKB
approximation, as developed in Refs. [9, 10]) as well as numerical ones based on Ref. [4].

The static M5-brane has an SO(5) symmetry associated with the internal S4. Turning
on the angular momentum parameters, this symmetry group breaks down to the Cartan
subgroup as SO(5) → SO(2)×SO(2) ∼ U(1)×U(1). The spectrum of the supergravity field
fluctuations can be organized in representations of SO(5) or SO(2)×SO(2). The proposal of
Refs. [2]-[4] is to identify the SO(5)-singlet modes propagating on the Minkowski boundary
of the spacetime with large-N QCD glueballs. The dilaton modes correspond to JPC = 0++

glueballs (J , P , and C being the spin, parity and charge conjugation quantum numbers). In
non-supersymmetric, pure SU(N) Yang–Mills theory, there is no counterpart of the SO(5)
global symmetry, so one would expect that at weak Yang–Mills coupling those Kaluza–Klein
(KK) particles which transform non-trivially under this group are very massive and decouple.
This problem was studied for QCD3 in [11] where it was shown that the first correction
(beyond the λ = ∞ limit) to the masses of these states does not lead to their decoupling in
the case of vanishing angular momenta. A general study for QCD3 supergravity models with
three angular momenta was recently given in [10]. In this paper, using both analytic (within
the WKB approximation) and numerical methods, we calculate the spectrum of glueballs
and of KK states. We find that the KK modes on S4 do not decouple in the large λ regime in
any region of the two dimensional parameter space (within the supergravity approximation).
In contrast, the KK modes on the circle associated with the compact Euclidean time (on the
M5-brane worldvolume) decouple in the limit of large angular momentum.

Some interesting effects concerning thermodynamical aspects of rotating D-branes have
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been recently pointed out in Refs. [12]-[14]. Here we will be considering the slightly different
construction of Refs. [2, 6] for zero-temperature QCD, where the Euclidean time parame-
terizes an internal circle, and the Minkowski time is one of the brane volume coordinates.

2 The Supergravity Model

2.1 The metric

The maximal number of angular momentum parameters for the rotating M5-brane (dictated
by the rank of the SO(5) isometry group of rotations of the static M5-brane) is equal to two.
This metric was constructed in [15], though the expression given there contains a few minor
mistakes which we correct below. The metric of the rotating M5-brane is given by2

ds2
11 = f−

1

3 (−hdt2 + dx2
1 + . . .+ dx2

5) +
f

2

3

h̃
dr2 + f

2

3 r2[(1 +
l21 cos2 θ

r2
+

l22 sin2 θ sin2 ψ

r2
)dθ2 + (1 +

l22 cos2 ψ

r2
) cos2 θdψ2 − 2

l22
r2

cos θ sin θ cosψ sinψdθdψ

−4m
cosh δ

r5∆f
dt(l1 sin2 θdϕ1 + l2 cos2 θ sin2 ψdϕ2) +

4ml1l2 cos2 θ sin2 θ sin2 ψ

r5∆f
dϕ1dϕ2

+ sin2 θ(1 +
l21
r2

+
2ml21 sin2 θ

r5∆f
)dϕ2

1 + cos2 θ sin2 ψ(1 +
l22
r2

+
2ml22 cos2 θ sin2 ψ

r5∆f
)dϕ2

2

]

,

(2.1)

where

∆ = 1 +
l21
r2

cos2 θ +
l22
r2

(sin2 θ + cos2 θ cos2 ψ) +
l21l

2
2

r4
cos2 θ cos2 ψ , (2.2)

f = 1 +
2m sinh2 α

∆r3
, (2.3)

h = 1 − 2m

∆r3
, (2.4)

h̃ =
1 +

l2
1

r2 +
l2
2

r2 +
l2
1
l2
2

r4 − 2m
r3

∆
. (2.5)

The horizon is located at r = rH , where rH is the largest real root of

(r2 + l21)(r
2 + l22) − 2mr = 0 . (2.6)

One can obtain the following formulas for the ADM mass, entropy and angular momentum:

2This differs from Eq. (12) of [15] in the expression for ∆ (called f−1

D there), the power of r in the
components gtϕ1

, gtϕ2
, gϕ1ϕ2

, and a factor sin2 ψ in gtϕ1
.
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MADM =
V5V (Ω4)

4πGN
2m(1 +

3

4
sinh2 α) , V (Ω4) =

8π2

3
, (2.7)

S =
V5V (Ω4)

4GN
2m rH coshα , (2.8)

J1,2 =
V5V (Ω4)

4πGN

m l1,2 coshα , (2.9)

GN =
κ2

11

8π
= 24π7l9P , (2.10)

where GN is Newton’s constant in 11 dimensions, and lP is the 11 dimensional Planck length.
The parameter α is related to the (magnetic) charge N and m by

sinh2 α =
1

2

(

√

(πNl3P/m)2 + 1 − 1
)

. (2.11)

The Hawking temperature and angular velocities are given by

TH =
3r4

H + (l21 + l22)r
2
H − l21l

2
2

8πmr2
H coshα

, Ω1,2 =
l1,2

coshα (r2
H + l21,2)

. (2.12)

These quantities satisfy the first law of black hole thermodynamics:

dMADM = THdS + Ω1dJ1 + Ω2dJ2 . (2.13)

Let us now go to Euclidean space τ = −it, l1,2 → il1,2, and take the field theory limit as
in [1, 6]:

r = U2l3P, 2m = U6
0 l

9
P, l1,2 = a2

1,2l
3
P , (2.14)

so that 2m sinh2 α→ πNl3P. We obtain the metric

ds2
11 =

∆
1

3U2l2P

(πN)
1

3

[

(1 − U6
0

U6∆
)dτ 2 + dx2

1 + . . . dx2
5

]

+ l2P
∆

1

3 (πN)
2

3 4dU2

U2[(1 − a4
1

U4 )(1 − a4
2

U4 ) − U6
0

U6 ]
+

l2P(πN)
2

3

∆
2

3

[

∆1dθ
2 + ∆2 cos2 θdψ2 + 2

a4
2

U4
cos θ sin θ cosψ sinψdθdψ

− 2U3
0

U4(πN)
1

2

(a2
1 sin2 θdτdϕ1 + a2

2 cos2 θ sin2 ψdτdϕ2) + sin2 θ(1 − a4
1

U4
)dϕ2

1 +

cos2 θ sin2 ψ(1 − a4
2

U4
)dϕ2

2

]

, (2.15)
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where

∆1 = 1 − a4
1 cos2 θ

U4
− a4

2 sin2 θ sin2 ψ

U4
, (2.16)

∆2 = 1 − a4
2 cos2 ψ

U4
, (2.17)

∆ = 1 − a4
1 cos2 θ

U4
− a4

2(sin
2 θ + cos2 θ cos2 ψ)

U4
+
a4

1a
4
2 cos2 θ cos2 ψ

U8
. (2.18)

Note that the component gϕ1ϕ2
vanishes in the field theory limit, and so do the last terms

in gϕ1ϕ1
and gϕ2ϕ2

.
The coordinate τ describes a circle of radius R0, where R0 is related to the Hawking

temperature TH by R0 = (2πTH)−1, with

TH =
3u0

2πA
, (2.19)

A =
u4

Hu
4
0

u8
H − 1

3
(a4

1 + a4
2)u

4
H − 1

3
a4

1a
4
2

=
3u4

0u
2
H

(u2
H − u2

IH)(u2
H − u2

1)(u
2
H − u2

2)
, (2.20)

where we have introduced the coordinate u by U = 2(πN)1/2u, and rescaled a1,2 →
2(πN)1/2a1,2. The constants u2

H , u
2
IH, u

2
1, u

2
2 represent the four different solutions for u2 of

the equation
(u4 − a4

1)(u
4 − a4

2) − u6
0u

2 = 0 . (2.21)

There are two positive (u2
H , u2

IH , u2
H > u2

IH), and two negative (or complex) solutions (u2
1, u

2
2),

with u2
H and u2

IH representing the outer and inner horizons respectively. When a1 = a2 = a,
the equation simplifies to

u4 − a4 = ±u3
0u , (2.22)

where the signs ± corresponds to the inner and outer horizons. From Eq. (2.22) one sees
that when a≫ u0 the two positive solutions get closer to each other, thus the inner horizon
approaches the outer horizon.

The gauge coupling g2
4 in the 3 + 1 dimensional Yang–Mills theory is given by the ratio

between the periods of the eleven-dimensional coordinates x5 and τ , i.e.

τ = R0θ2, x5 =
g2
4

2π
R0θ1 =

λ

N
R0θ1 , θ1,2 = θ1,2 + 2π , (2.23)

where λ ≡ g2
4
N

2π
is the ’t Hooft coupling. Dimensional reduction in θ1 gives the type IIA

metric representing the field theory limit of the rotating D4-brane metric with two angular
momentum parameters:

ds2
IIA =

2πλA

3u0

u∆
1

2 [4u2(−dx2
0 + dx2

1 + dx2
2 + dx2

3) +
4A2

9u2
0

u2(1 − u6
0

u6∆
)dθ2

2 +
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+
4du2

u2((1 − a4
1

u4 )(1 − a4
2

u4 ) − u6
0

u6 )
+

∆1

∆
dθ2 +

∆2

∆
cos2 θdψ2

+2
a4

2

u4∆
cos θ sin θ cosψ sinψdθdψ + sin2 θ

(1 − a4
1

u4 )

∆
dϕ2

1 + cos2 θ sin2 ψ
(1 − a4

2

u4 )

∆
dϕ2

2

−4Au2
0

3u4∆
(a2

1 sin2 θdθ2dϕ1 + a2
2 cos2 θ sin2 ψdθ2dϕ2)

]

, (2.24)

where the dilaton field is given by

e2Φ =
8πA3λ3u3∆

1

2

27u3
0N

2
. (2.25)

In these coordinates, the metric is independent of N , and the string coupling is of order 1/N ,
as expected. The ’t Hooft coupling λ appears as an overall factor of the metric. For u0 6= 0,
curvature invariants have a finite value at the horizon, and they are suppressed by inverse
powers of λ.

The metric (2.24) has a U(1)3 isometry associated with translations in θ2, ϕ1, ϕ2. This
should appear as a global symmetry in the corresponding dual Yang–Mills theory. Since the
pure SU(N) QCD has no such symmetries, one may expect that states which have charges
with respect to U(1)3 have a large mass compared to the glueball masses. In Section 4 we
calculate the different mass spectra and investigate this possibility.

2.2 String tension and action

The string tension is given by 1/2π times the coefficient of
∑

dx2
i , evaluated at the horizon,

at the angles where it takes its minimum value [2, 6]. This follows by minimizing the Nambu–
Goto action of the string configuration. The absolute minimum occurs at θ = ψ = 0 or π.
We obtain

σ =
4

3
λAu2

0 . (2.26)

String excitations should have masses of order σ1/2. The spin ≤ 2 glueballs that remain in
the supergravity approximation – whose masses are determined from the Laplace equation –
have masses which are independent of λ.

In the field theory limit, the free energy F (= Action × TH) takes the simple form

F = E − THS − Ω1J1 − Ω2J2 = − V5

3π3
N3 u6

0 , (2.27)

where E = MADM −Mextremal ,Mextremal = MADM(u0 = 0). Using that the M5-brane coordi-
nate x5 is compactified on a circle with radius R0λ/N , one has the relation

V5 =
V4λ

THN
. (2.28)
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Expressing u0 in terms of the string tension (2.26) we obtain the intriguing relation

−Action

V4

=
1

12π

N2

λ
σ2 , (2.29)

that generalizes the result found in [8] for the case of one angular momentum. Thus, in terms
of the string tension, the action is independent of a1,2. It would be very interesting to have
a derivation of (2.29) from the Yang–Mills side as a non-perturbative contribution to the
partition function (related to the expectation value of the gluon condensate 〈 1

4g2
Y M

Tr F 2
µν(0)〉).

2.3 The supersymmetric limit u0 = 0

Metrics of rotating branes with non-extremality parameter m = 0 greatly simplify upon
introducing Cartesian-type coordinates [6]. For the extremal (m = 0) M5-brane metric
(2.1), one introduces [13]

y1 =
√

r2 + l21 sin θ cosϕ1 , y2 =
√

r2 + l21 sin θ sinϕ1 ,

y3 =
√

r2 + l22 cos θ sinψ cosϕ2 , y4 =
√

r2 + l22 cos θ sinψ sinϕ2 ,

y5 = r cos θ cosψ . (2.30)

Using these coordinates we obtain

ds2
IIA = f−1/2[ − dx2

0 +
4
∑

i=1

dx2
i ] + f 1/2

5
∑

j=1

dy2
j , (2.31)

where f is obtained from Eq. (2.3) by taking the limit α → ∞, m → 0 at fixed N using

(2.11): f = 1 +
πNl3

P

∆r3 , with r, θ, ψ expressed in terms of yj by Eq. (2.30). In this limit
the BPS bound is saturated, MADM = const N . It can be shown that the function f(yj)
satisfies the equation ∂j∂

jf = 0, i.e. it is a harmonic function in the 5-space parameterized
by yj. The metric (2.31) has unbroken supersymmetries, which can also be understood by
interpreting the metric (2.31) as a multicenter distribution of BPS D4-branes, by constructing
the harmonic function f as a linear superposition of harmonic functions corresponding to
each D4-brane [13, 16].

The field theory limit of (2.31) can be obtained by replacing f → f − 1, and properly
rescaling coordinates. Alternatively, we can return to the metric (2.24) written in spherical
coordinates, and set u0 = 0. The resulting metric has a curvature singularity in u = a1 (we
are assuming a1 > a2 > 0), which cannot be removed by any choice of periodicity in the τ
coordinates (the horizon region of the extremal u0 = 0 metric is not a Rindler space). Because
of the singularity, the supergravity approximation breaks down in the u0 = 0 case; in order
to understand the corresponding supersymmetric gauge theory, one needs to understand the
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full string theory. At the supergravity level, it is meaningless to associate a temperature to
this metric.

One can have control over the string-theory corrections if we regularize the metric by
taking u0 6= 0 and consider the limit of small u0 (or equivalently, a1,2/u0 large). For any value
of a1,2/u0, one can choose λ sufficiently large so that all curvature invariants are arbitrarily
small. This is the technique used in the next section when discussing the large a1,2/u0 limit.
Note that in this limit TH → ∞. In this theory, all fermions—which have masses O(TH)—
decouple. On the other hand, the spectrum of the u0 = 0 theory must be supersymmetric
with the usual degeneracy between fermions and bosons. The supersymmetric u0 = 0 theory
cannot coincide with the theory obtained by taking the limit u0 → 0 (in the fashion described
above), since the latter theory does not have fermions in the spectrum. Nevertheless, since
the corresponding background metrics are essentially the same (at a1,2 ≫ u0) it is possible
that a part of the structure of the theory with a1/u0 ≫ 1 may be dictated by the structure
of the u0 = 0 supersymmetric model. We shall return to this point in our conclusions.

3 Glueballs and the Related KK Modes

The 0++ glueballs are related to spherically symmetric modes of the dilaton fluctuations, of
the form

Ψ = φ(u)eik·x , (3.1)

where M2 = −k2 [2]. The differential equation determining the mass eigenvalues is obtained
by substituting this into the dilaton equation of motion

1√
g
∂µ

[

e−2Φ√ggµν∂νΨ
]

= 0 , (3.2)

using the background metric (2.24), and the formula

√
g = C u9∆ cos2 θ sin θ sinψ , C =

1

2πλ

(

4πλA

3u0

)6

. (3.3)

In addition to the 0++ glueballs we consider particles with non-vanishing U(1) charge asso-
ciated with the circle parameterized by θ2. The corresponding solutions of (3.2) will be of
the form

Ψ = φ(u)eik·xeinθ2 . (3.4)

We will show both analytically (within the WKB approximation) and numerically that these
states do decouple for a particular range of parameters. We will also consider the KK states
associated with the l = 1 modes of the S4. For the static (a1 = a2 = 0) M5 metric, these
transform in the 5 representation of SO(5). After introducing angular momentum, this

7



decomposes into (2, 1) ⊕ (1, 2) ⊕ (1, 1) of the Cartan subgroup SO(2) × SO(2). According
to this decomposition, the corresponding solutions of (3.2) for the two doublets will be given
by

Ψ = φ(u)eik·x sin θ
(

cosϕ1

sinϕ1

)

, (3.5)

Ψ = φ(u)eik·x cos θ sinψ
(

cosϕ2

sinϕ2

)

, (3.6)

whereas for the singlet it is of the form

Ψ = φ(u)eik·x cos θ cosψ . (3.7)

In ordinary (finite λ,N) Yang–Mills theory there is no SO(2) × SO(2) symmetry, so one
would expect that at least the states which transform non-trivially under SO(2) × SO(2)
become very massive and decouple in the weak-coupling limit. It is clear that the singlet state
(3.7) should also decouple. If it did not decouple at small λ, it would then be represented by
some (gluon field) operator in the gauge theory. In the zero angular momentum case, this
state combines with the other four components to form a multiplet (a 5) of SO(5). Thus
the singlet state cannot correspond to a purely gluonic operator (since the gluon field is a
singlet under SO(5)), and must decouple.

Finally, we shall also consider 0−+ glueballs, which couple to the operator Õ4 = Tr FF̃ .
On the D4-brane worldvolume, the field that couples to this operator is the R–R 1-form Aµ,
which satisfies the equation of motion

∂ν [
√
ggµρgνσ(∂ρAσ − ∂σAρ)] = 0 , µ, ν = 1, . . . , 10 . (3.8)

Finding angular-independent solutions is complicated, because of the non-diagonal compo-
nents of the metric. The metric becomes diagonal in the two opposite limits a1,2 ≪ u0 and
a1,2 ≫ u0. In these cases one can consider solutions of the form

Aθ2
= χθ2

(u) eik·x , Aµ = 0 if µ 6= θ2 . (3.9)

In the following we will first present the mass spectra of these states obtained in the
WKB approximation, and then the same spectra obtained by using numerical methods. We
present tables for each state comparing the WKB with the numerical results and find that
they are in a very good agreement. We also compare them to the lattice results for the
glueball states which were computed for N = 3 and small λ.

3.1 Mass spectrum in the WKB approximation

In the following we use the WKB approach of [10] (which generalizes the WKB approach
of [9]) to calculate the different mass spectra (including KK modes) in the present case of

8



QCD4 with two angular momenta. Consider differential equations of the form

∂ρ (f(ρ)∂ρφ) +
(

M2h(ρ) + p(ρ)
)

φ = 0 , (3.10)

where M represents a mass parameter, and f(ρ), h(ρ) and p(ρ), ρ ∈ [ρH ,∞), are three
arbitrary functions which are independent of M and have the following behavior:

f ≈ f1(ρ− ρH)s1 , h ≈ h1(ρ− ρH)s2 , p ≈ p1(ρ− ρH)s3 , as ρ→ ρH , (3.11)

f ≈ f2ρ
r1 , h ≈ h2ρ

r2 , p ≈ p2ρ
r3 , as ρ→ ∞ , (3.12)

where r1,2,3, s1,2,3, f1,2, h1,2 and p1,2 are (real) numerical constants. For large masses M , the
WKB method can be applied to obtain the approximate spectrum. One finds [10]

M2 =
π2

ξ2
m

(

m+
(

−1 +
α2

α1

+
β2

β1

)

)

+ O(m0) , m ≥ 1 . (3.13)

where

ξ =
∫

∞

ρH

dρ

√

h

f
, (3.14)

is a constant which scales like a length, and

α1 = s2 − s1 + 2 , β1 = r1 − r2 − 2 , (3.15)

α2 = |s1 − 1| or α2 =

√

(s1 − 1)2 − 4
p1

f1

(if s3 − s1 + 2 = 0) ,

β2 = |r1 − 1| or β2 =

√

(r1 − 1)2 − 4
p2

f2

(if r1 − r3 − 2 = 0) . (3.16)

Consistency requires that α1 and β1 are strictly positive numbers whereas s3 − s1 + 2 and
r1 − r3 − 2 can be either positive or zero. Typically the validity of the WKB approximation
requires that the quantum number m be much larger than 1 (for precise conditions see [10]).

3.1.1 Masses of the 0++ glueballs

The masses of the 0++ glueballs are determined from the differential equation (3.2) with the
ansatz (3.1). Introducing ρ = u2 one gets Eq. (3.10) with3

f(ρ) = (ρ2 − b21)(ρ
2 − b22) − ρ3

0ρ ≡ (ρ− ρH)(ρ− ρ1)(ρ− ρ2)(ρ− ρ3) ,

h(ρ) =
ρ

4
, p(ρ) = 0 . (3.17)

3In the rest of subsection 3.1 we will use the notation a2

1,2 = b1,2.
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This gives for the various constants

s1 = 1 , s2 = 0 , r1 = 4 , r2 = 1 ,

α1 = 1 , α2 = 0 , β1 = 1 , β2 = 3 . (3.18)

Using (3.13) one obtains the following mass spectrum

M2 =
π2

ξ2
m(m+ 2) + O(m0) , m ≥ 1 ,

ξ =
1

2

∫

∞

ρH

dρ
√
ρ

√

(ρ− ρH)(ρ− ρ1)(ρ− ρ2)(ρ− ρ3)
, (3.19)

This formula implies that mass ratios between resonances are, in the WKB approximation,
independent of the angular momentum parameters b1, b2. This is similar to QCD3, where
the general rotating D3-brane solution with three angular momenta parameters was used
[10]. As in [10], the WKB approximation breaks down in the region near b1 = b2, u0 = 0.

3.1.2 The KK modes on the circle

For the KK modes with non-vanishing U(1) charge corresponding to the periodic variable θ2
we look for solutions of (3.2) with the ansatz (3.4). In this case we obtain Eq. (3.10) with
M2 replaced by M2 − 4π2n2T 2

H and

f(ρ) = (ρ2 − b21)(ρ
2 − b22) − ρ3

0ρ ,

h(ρ) =
ρ

4
, p(ρ) = −π

2n2ρ3
0T

2
Hρ

2

f(ρ)
. (3.20)

This gives for the various constants

s1 = 1 , s2 = 0 , s3 = −1 , r1 = 4 , r2 = 1 , r3 = −2 ,

α1 = 1 , α2 =
2πnρ

3/2
0 ρHTH

(ρH − ρ1)(ρH − ρ2)(ρH − ρ3)
, β1 = 1 , β2 = 3 . (3.21)

Using (2.19) and (2.20) we see that α2 = n. Then (3.13) (with M2 →M2 − 4π2n2T 2
H) gives

the following mass spectrum

M2 = 4π2n2T 2
H +

π2

ξ2
m(m+ 2 + n) + O(m0) , m ≥ 1 . (3.22)

We would like to examine the way that these states decouple in two limiting cases. First
consider the case with b1 ≫ ρ0 and b2. Then we see from (2.19) that

TH ≃ b21

πρ
3/2
0

. (3.23)
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On the other hand, in the same limit,

ξ ≃ 1.31

b
1/2
1

. (3.24)

Therefore the ratios of the masses of the glueballs to those of the U(1) charged particles
behave as

Mglueb.

Mcirc.
≃ 1.20

√

m(m+ 2)

n

(

ρ0

b1

)3/2

, for b1 ≫ ρ0 and b2 . (3.25)

Hence, the KK modes on the circle decouple with a power law. Now consider the case
b1 = 4b2 ≫ ρ0. Then

TH ≃ 15b21

16πρ
3/2
0

(3.26)

and

ξ ≃ 1.33

b
1/2
1

. (3.27)

Therefore the ratios of the masses of the glueballs to those of the U(1) charged particles
behave as

Mglueb.

Mcirc.

≃ 1.26

√

m(m+ 2)

n

(

ρ0

b1

)3/2

, for b1 = 4b2 ≫ ρ0 , (3.28)

showing that in this case there is also decoupling with the same power law as in (3.25) (up
to a slightly different numerical factor).

3.1.3 The KK modes of S4

Let us now compute the mass spectrum for the KK states with non-trivial angular de-
pendence on S4. The two equations corresponding to the doublets must be related by an
interchange of a1 and a2, whereas the one corresponding to the singlet should be invariant
under such an interchange. For the (2, 1) doublet we make the ansatz (3.5). Inserting into
Eq. (3.2) one finds equation (3.10) with

f(ρ) = (ρ2 − b21)(ρ
2 − b22) − ρ3

0ρ , h(ρ) =
ρ

4
,

p(ρ) = −4ρ2

(

1 − b22
2ρ2

)

− b21ρ
4

f(ρ)

(

1 − b22
ρ2

)2

. (3.29)

For the various constants we find

s1 = 1 , s2 = 0 , s3 = −1 , r1 = 4 , r2 = 1 , r3 = 2 ,

11



f1 = (ρH − ρ1)(ρH − ρ2)(ρH − ρ3) , f2 = 1 , p1 = −b
2
1ρ

4
H

f1

(

1 − b22
ρ2

H

)2

,

p2 = −4 , α1 = 1 , α2 = 2
b1ρ

2
H

f1

(

1 − b22
ρ2

H

)

, β1 = 1 , β2 = 5 . (3.30)

Hence, the mass is given by

M2 =
π2

ξ2
m

(

m+ 4 +
2b1ρ

2
H

f1

(

1 − b22
ρ2

H

)

)

+ O(m0) , m ≥ 1 , (3.31)

where ξ is given by (3.19). Consider the mass formula in the region b1 ≫ ρ0 where the KK
modes on the circle decouple, as in the case of one angular momentum [6, 8]. Using ρH

∼= b1,
the mass formula takes the form

M2 ≃ π2

ξ2
m(m+ 5) + O(m0) , m ≥ 1 . (3.32)

This shows that for b1 ≫ ρ0 the mass of these KK states is of the same order as the glueball
masses (3.19).

For the (1, 2) doublet we make the ansatz (3.6) We obtain the same results as (3.29)–
(3.31) with b1 and b2 interchanged. For completeness we include the mass formula

M2 =
π2

ξ2
m

(

m+ 4 +
2b2ρ

2
H

f1

(

1 − b21
ρ2

H

)

)

+ O(m0) , m ≥ 1 . (3.33)

For ρH
∼= b1 this becomes

M2 ≃ π2

ξ2
m(m+ 4) + O(m0) , m ≥ 1 , (3.34)

where ξ is given by (3.19). This shows that for b1 ≫ ρ0 the mass of these KK states is
of the same order as glueball masses and a little lighter than the modes corresponding to
the KK doublet (3.5). As a general rule (which applies in particular to QCD3 [10]), states
with ϕ-dependence corresponding to the largest angular parameter are slightly heavier. In
addition to the two doublets there is also a singlet (1, 1), represented by Eq. (3.7). We find
that the function φ(ρ) obeys (3.10) with

f(u) = (ρ2 − b21)(ρ
2 − b22) − ρ3

0ρ , h(ρ) =
ρ

4
,

p(ρ) = 2(b21 + b22 − 2ρ2) . (3.35)

For the various constants necessary to compute the corresponding masses we find

s1 = 1 , s2 = 0 , s3 = 0 , r1 = 4 , r2 = 1 , r3 = 2 ,

p2 = −4 , f2 = 1 , α1 = 1 , α2 = 0 , β1 = 1 , β2 = 5 . (3.36)
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Using (3.13) the mass formula for the singlet (3.7) reads

M2 =
π2

ξ2
m(m+ 4) + O(m0) , m ≥ 1 , (3.37)

where ξ is again given in (3.19). Clearly, the masses of these modes are of the same order as
the glueball masses (3.19), albeit slightly heavier.

3.1.4 Masses of the 0−+ glueballs

Let us finally also consider 0−+ glueballs. As we have mentioned, finding angular-independent
solutions is complicated, because of the non-diagonal components of the metric. The metric
becomes diagonal in the two opposite limits b1,2 ≪ ρ0 and b1,2 ≫ ρ0. In these cases one can
consider solutions of the form (3.9). Substituting this into (3.8), we obtain a second order
ordinary differential equation which, upon introducing ρ = u2 and writing a2

1,2 = b1,2, can be
written as Eq. (3.10) (with φ(ρ) → χθ2

(ρ) ) with

f(ρ) = (ρ2 − b21)(ρ
2 − b22) , p(ρ) = 0 ,

h(ρ) =
1

4

ρ(ρ2 − b21)(ρ
2 − b22)

(ρ2 − b21)(ρ
2 − b22) − ρ3

0ρ
. (3.38)

This gives for the various constants

s1 = 0 , s2 = −1 , r1 = 4 , r2 = 1 ,

α1 = 1 , α2 = 1 , β1 = 1 , β2 = 3 . (3.39)

Using (3.13) one obtains the following mass spectrum

M2 =
π2

ξ2
m(m+ 3) + O(m0) , m ≥ 1 , (3.40)

where, it turns out, the constant ξ is still given by the corresponding expression in (3.19). In
the limit when b1, b2 ≫ ρ0, the singularity structure of Eq. (3.10) changes [9]. In this limit
however, the equation coincides with the equation for the 0++ glueballs, and therefore the
mass formula should be changed to

M2 =
π2

ξ2
(m+ 1)(m+ 3) + O(m0) , m ≥ 1 , (3.41)

corresponding to the mass formula (3.19) of the 0++ glueballs shifted by one (since the lowest
state should correspond to the zero mode of Eq. (3.10) and not to a glueball state [17]). This
will be the formula used for comparison to the numerical results for a≫ u0.
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3.2 Numerical evaluation of the mass spectra

In the following, we present the results of the numerical evaluation of the mass spectra
corresponding to the states described in Section 3.1. For every state, we will illustrate the
dependence of the masses on the angular momentum parameter along a generic direction
(chosen to be a1 = 2a2), along the special direction a1 = a2, and a table comparing the
numerical and WKB results (and the lattice results for glueball states).

3.2.1 Masses of the 0++ glueballs

The equation for the 0++ glueballs can also be written as

∂u

[

1

u

(

(u4 − a4
1)(u

4 − a4
2) − u2u6

0

)

∂uf(u)
]

− k2u3f(u) = 0. (3.42)

This equation is symmetric under the interchange of a1 and a2, and reproduces Eq. (2.14) of
Ref. [8] for a2 → 0. This differential equation can be solved numerically using the shooting
method as described in Ref. [4]. We require that the solution be normalizable (that is for
u → ∞ f(u) should vanish), and regular at the horizon uH. These conditions restrict the
possible values of M2 to a discrete set, which can be identified with the glueball masses. The
analysis of [8] demonstrated that the 0++ glueball masses are very stable against the variation
of a single angular momentum parameter. The numerical solutions of Eq. (3.42) show that
this statement remains valid for the whole range of angular parameters (a1, a2), except in the
region a1 = a2 ≫ u0. This is consistent with the fact that in the WKB approximation (to
order 1/m) the ratio of masses are independent of a1, a2 everywhere except at a1 = a2 ≫ u0,
where the approximation breaks down. As mentioned before, a1 = a2, u0 = 0 is the special
region where the inner horizon coincides with the outer horizon. As a result, the factor
multiplying the second derivative term in (3.42) has a double zero (instead of simple zero),
and the behavior of the solutions is different.

In Fig. 3.1 we show the behavior of the lowest eigenvalue of Eq. (3.42). The valley along
a1 = a2 is related to the fact that the differential equation (and the physics of the model)
is symmetric under the interchange a1 ↔ a2. Note that the function is smooth except at
the point a1 = a2 = ∞ (or a1 = a2, u0 = 0). In Fig. 3.2 we show the behavior of the ratio
of the glueball masses along the direction a1 = 2a2, which illustrates the fact that along a
generic direction (by a generic direction we mean that it does not asymptote to a1 = a2) the
glueball mass ratios behave just like for the case with only one angular momentum, that is
they change only slightly and take on their asymptotic value very quickly. The fact that the
behavior of the glueball masses does not change can be seen comparing Fig. 3.2 to Fig. (2.1)
of Ref. [8]. Table 3.1 contains the comparison of the lattice results, the numerical solutions
and the WKB results along a generic direction (chosen to be a1 = 2a2).

In Fig. 3.3 we show a ratio of masses along the special direction a1 = a2, where the inner
and outer horizons come together as a1/u0 → ∞ (this is also the region where the WKB

14



0 2 4 6 8 10

a1

0

2

4

6

8

10

a2

0
10
20

30

40

M

2

4

6

8

10

Figure 3.1: The unnormalized values of the 0++ glueball mass (the lowest eigenvalues of
Eq. (3.42)) as a function of the two angular momenta. Note that this function is smooth
everywhere except in the region a1 = a2 → ∞.

approximation breaks down). In this region the mass ratios behave very differently than
anywhere else and depart from the lattice results (for example, the weak-coupling lattice
value for M0++∗/M0++ for N = 3 is about 1.74, which is notably bigger than the numbers of
Fig. 3.3 at large a).

3.2.2 Masses of the 0−+ glueballs

The differential equation for 0−+ glueballs can be written as

1

u3
∂u[

1

u
(u4 − a4

1)(u
4 − a4

2)∂uχθ2
(u)] = −M2 (u4 − a4

1)(u
4 − a4

2)

(u4 − a4
1)(u

4 − a4
2) − u6

0u
2
χθ2

(u) . (3.43)

The corresponding mass spectrum can be obtained using a similar numerical method as
for the 0++ glueballs. The dependence of the lightest 0−+ glueball mass on the angular
momentum along a generic direction (chosen again to be a1 = 2a2) is given in Fig. 3.4. One
can see that while the masses are fairly stable against variations of the angular momentum,
just like in the case of a2 = 0 discussed in [8], the actual values of the mass ratios compared
to 0++ increase by a sizeable (∼ 25%) value. The change is in the right direction as suggested
by recent improved lattice simulations [20]. The actual asymptotic value of the mass ratio
m

0−+

m
0++

= 1.59 is the same as for the a2 = 0 case everywhere except very close to the region

a1 = a2 ≫ u0. Table 3.2 contains the comparison of the lattice results to the supergravity
results evaluated using the numerical and the WKB methods.

Just as for the case of the 0++ glueballs, this ratio behaves very differently along the
special a1 = a2 direction, and departs significantly from the lattice result (

m
0−+

m
0++

)lattice = 1.46

as it can be seen in Fig. 3.5.
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1.588
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Figure 3.2: The ratio of the 0++∗ mass to the 0++ mass along a generic direction, chosen
here to be a1 = 2a2 = a. Note, that the change in the ratio is tiny, and the asymptotic value
of the ratio is the same as in Ref. [8] in the case of a1 → ∞, a2 = 0.
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Figure 3.3: The behavior of the ratio r of the mass of the excited 0++∗ glueball mass to
the 0++ mass along the line a1 = a2. Note, that along this direction the solutions behave
very differently than anywhere else in the parameter space and depart significantly from the
lattice results.
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state lattice numerical WKB
0++ 1.61 ± 0.15 1.61 (input) 1.55
0++∗ 2.8 2.57 2.53
0++∗∗ − 3.49 3.46
0++∗∗∗ − 4.40 4.37
0++∗∗∗∗ − 5.30 5.28
0++∗∗∗∗∗ − 6.20 6.18

Table 3.1: The masses of the first few 0++ glueballs in GeV. The first column gives the
available lattice results [18, 19, 20], the second the asymptotic value of the supergravity
calculation using the numerical method (the point is chosen to be a1 = 2a2 = 20u0), while
the third column the WKB result for the same supergravity approximation.

2 4 6 8 10

1.25

1.35

1.4

1.45

1.5

1.55

1.6

Figure 3.4: The ratio of the lowest 0−+ mass to the lowest 0++ mass along a generic direction,
chosen here to be a1 = 2a2 = a. Note, that the ratio is very stable against the variations of
the parameters. The actual change in the ratio is sizeable, and independent of the direction
chosen in the (a1, a2) parameter space (except the line a1 = a2) and agrees with the ratio
found in Ref. [8] for the case of a1 → ∞, a2 = 0. As explained in the text, this figure is
only reliable for the regions a≪ u0 and a≫ u0 which are shown by solid lines, while for the
intermediate region denoted by a dashed line there are corrections due to the non-vanishing
off-diagonal components of the metric.
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Figure 3.5: The behavior of the ratio r of the mass of the lowest 0−+ glueball mass to the
lowest 0++ mass along the line a1 = a2. As explained in the text, this figure is only reliable
for the regions a≪ u0 and a≫ u0 which are shown by solid lines.

state lattice Num.(a1,2 = 0) Num.(a1 = 2a2 = 20) WKB
0−+ 2.59 ± 0.13 2.00 2.57 2.53
0−+∗ 3.64 ± 0.18 2.98 3.49 3.46
0−+∗∗ − 3.91 4.40 4.37
0−+∗∗∗ − 4.83 5.30 5.28
0−+∗∗∗∗ − 5.74 6.20 6.18
0−+∗∗∗∗∗ − 6.64 7.10 7.09

Table 3.2: The masses of the first few 0−+ glueballs in GeV. Unlike 0++ glueballs, the su-
pergravity masses for these glueballs are sensitive to the values of a1, a2. Two cases are
displayed, illustrating the typical values that one gets for small and large a1, a2 (the asymp-
totic values for large a1, a2 are the same for any generic direction, i.e. with a1 6= a2). The
lattice results are from [19, 20].
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3.2.3 Masses of the KK modes of S4

In terms of u =
√
ρ, equation (3.29) for the first KK doublet (3.5) reads

∂u

[

1

u

(

(u4 − a4
1)(u

4 − a4
2) − u2u6

0

)

∂uf(u)
]

− u3

(

k2 +
4u2

h0

H(u)

)

f(u) = 0. (3.44)

where

h0(u) = (1 − a4
1

u4
)(1 − a4

2

u4
) − u6

0

u6
, (3.45)

H(u) = 4h0(u) (1 − a4
2

2u4
) +

a4
1

u4
(1 − a4

2

u4
)2 . (3.46)

The components of the second doublet (3.6) give the same equation with a1 and a2 in-
terchanged. Finally, the equation that determines the mass spectrum of the singlet (3.7)
is

u2∂u

[

1

u

(

(u4 − a4
1)(u

4 − a4
2) − u2

)

f ′(u)
]

+ u3(8a4
1 + 8a4

2 − k2u2 − 16u4)f(u) = 0. (3.47)

This is symmetric under the interchange of a1 and a2. One can again numerically determine
the solutions of these equations using the shooting method. In Figs. 3.6 and 3.7 we show
the behavior of the SO(2) × SO(2) singlet mode first along a generic direction (which was
again chosen to be a1 = 2a2), and then along the special direction a1 = a2. One can see that
this mode does not decouple on any region of the parameter space. Figs. 3.8 and 3.9 show
the similar plots for the non-singlet KK modes (for (3.44)), which similarly do not decouple
anywhere in the parameter space. Tables 3.3 and 3.4 show the comparison of the first few
KK modes evaluated using the numerical and the WKB methods.

3.2.4 Masses of the KK modes on the circle

Next we consider the KK modes coming from the compact D-brane coordinate. These modes
have the form (3.4), where φ(u) obeys the differential equation

∂u

[

1

u

(

(u4 − a4
1)(u

4 − a4
2) − u2

)

∂uφ(u)
]

= φ(u)u3

(

k2 +
9n2(a4

1 − u4)(a4
2 − u4)

A2(u8 − u4(a4
1 + a4

2) − u2 + a4
1a

4
2)

)

.

(3.48)

One can again numerically solve these equations. For a generic direction (chosen to be again
a1 = 2a2) we find that these modes decouple very quickly from the spectrum, just like in
the case with one angular momentum parameter discussed in Ref. [8]. This is illustrated
in Fig. 3.10. For the case of the special direction a1 = a2, the numerical analysis of the
decoupling is inconclusive. The masses of these KK modes grow much slower than for the
generic case. At the point when our numerical solutions become unreliable, these modes
are not decoupled yet, however one can not rule out the possibility that for a → ∞ they
eventually do decouple (see Fig. 3.11).

19



2 4 6 8 10
a

1.32

1.34

1.36

1.38

1.42

1.44

r

Figure 3.6: The mass ratio r of the SO(2) × SO(2) singlet KK mode to the lowest 0++

glueball along the generic direction a1 = 2a2.
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Figure 3.7: The mass ratio r of the SO(2) × SO(2) singlet KK mode to the lowest glueball
mass 0++ along the special direction a1 = a2.
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state numerical WKB
KK 2.15 2.00
KK∗ 3.23 3.09
KK∗∗ 4.20 4.09
KK∗∗∗ 5.15 5.05
KK∗∗∗∗ 6.07 5.99
KK∗∗∗∗∗ 6.99 6.91

Table 3.3: The masses of the first few singlet KK modes in GeV. The first column gives
the asymptotic value of the supergravity calculation using the numerical method (the point
is chosen to be a1 = 2a2 = 20u0), while the second column the WKB result for the same
supergravity approximation.

2 4 6 8 10
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Figure 3.8: The mass ratio r of the SO(2)× SO(2) doublet KK mode to the lowest glueball
masses along the generic direction a1 = 2a2.
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Figure 3.9: The mass ratio r of the lightest glueball to the SO(2)×SO(2) doublet KK modes
along the special direction a1 = a2.

state numerical WKB
KK 2.84 2.19
KK∗ 3.80 3.34
KK∗∗ 4.73 4.37
KK∗∗∗ 5.54 5.36
KK∗∗∗∗ 6.57 6.31
KK∗∗∗∗∗ 7.47 7.25

Table 3.4: The masses of the first few non-singlet KK modes in GeV. The first column gives
the asymptotic value of the supergravity calculation using the numerical method (the point
is chosen to be a1 = 2a2 = 20u0), while the second column the WKB result for the same
supergravity approximation.
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Figure 3.10: The mass ratio r of the lightest glueball to the KK mode on the compact D-
brane coordinate θ2 along the generic direction a1 = 2a2 = a. Just as for the case with only
one angular momentum, these states decouple very quickly from the spectrum.
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Figure 3.11: The mass ratio r of the lightest glueball to the KK mode on the compact
D-brane coordinate θ2 along the special direction a1 = a2.
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state numerical WKB
KK 11.27 11.24
KK∗ 11.48 11.45
KK∗∗ 11.76 11.72
KK∗∗∗ 12.09 12.06
KK∗∗∗∗ 12.48 12.45
KK∗∗∗∗∗ 12.92 12.89

Table 3.5: The masses of the first few KK modes on the circle in GeV. Along a generic
direction these KK modes decouple, thus we have chosen an arbitrary point a1 = 2a2 = 2.5u0

for the comparison of the numerical and WKB results. which are given in the first and second
column.

4 Conclusions

In this paper we have presented a two-parameter family of supergravity models of non-
supersymmetric 3 + 1 dimensional SU(N) Yang–Mills theory, based on regular geometries
with D4-brane charge. In these models, we have evaluated the mass spectra of the scalar
glueballs and some of the related KK modes everywhere on the two dimensional parameter
space using both numerical and analytic (WKB) methods. We find that the glueball mass
ratios are very stable against the variation of the angular momentum parameters. The
asymptotic values of these ratios for large angular momenta are in good agreement with
the most recent lattice results everywhere in the parameter space except along a special
line a1 = a2 ≫ u0 (which is exactly the region where the WKB approximation breaks
down, and also the region where the inner and outer horizons approach each other and
the supergravity approximation approaches a discontinuous limit). The KK modes on the
compact D-brane coordinate decouple for large angular momenta everywhere (except perhaps
along a1 = a2, where our analysis of decoupling is inconclusive). The KK modes on the
S4 however do not decouple from the spectrum anywhere in the parameter space in the
supergravity approximation used in this paper.

The masses evaluated in this paper in the supergravity approximation can in principle get
large corrections when extrapolating from the strong coupling (large λ) regime to the weak-
coupling regime of the Yang–Mills theory. If the spectrum of the corresponding string models
at small λ do indeed reproduce the Yang–Mills spectrum, a natural question to ask is why the
glueball masses (or perhaps only the glueball mass ratios) would get small corrections, while
the KK masses get large corrections. Since in the limit a1, a2 ≫ u0 the metric approaches
the supersymmetric space (2.31), it is possible that a subset of the masses may be protected
by supersymmetry (as explained in Sec. 2.3, the naive limit u0 → 0 does not lead to a
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supersymmetric theory, since it does not have fermions in the spectrum). A problem of
interest is thus to investigate the supersymmetric model with u0 = 0, and determine which
scalars belong to short BPS multiplets, and which ones are in long multiplets. Since the
masses of the scalars belonging to short multiplets should not be changed in the λ ≪ 1
regime, this could explain why the 0−+ glueball masses are so close to the lattice values,
and it may be used as a highly non-trivial quantitative test of the conjectured relation of
supergravity to non-supersymmetric SU(N) Yang–Mills theory.
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[8] C. Csáki, Y. Oz, J. Russo and J. Terning, “Large N QCD from rotating branes”,
hep-th/9810186.

[9] J.A. Minahan, “Glueball Mass Spectra and Other Issues for Supergravity Duals of
QCD Models”, hep-th/9811156.

[10] J.G. Russo and K. Sfetsos, “Rotating D3 branes and QCD in three dimensions”,
hep-th/9901056.

[11] H. Ooguri, H. Robins and J. Tannenhauser, “Glueballs and Their Kaluza–Klein
Cousins”, Phys. Lett. B437 (1998) 77, hep-th/9806171.

[12] S.S. Gubser, “Thermodynamics of spinning D3-branes”, hep-th/9810225.

[13] P. Kraus, F. Larsen and S.P. Trivedi, “ The Coulomb Branch of Gauge Theory from
Rotating Branes”, hep-th/9811120.

[14] R.G. Cai and K.S. Soh, “Critical behavior in the rotating D-branes”, hep-th/9812121.
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