1,798 research outputs found

    Aspergillus fumigatus mycovirus causes mild hypervirulent effect on pathogenicity when tested on Galleria mellonella

    Get PDF
    This document is the Accepted Manuscript version of the following article: Selin Ozkan, and Robert H. A. Coutts, 'Aspergillus fumigatus mycovirus causes mild hypervirulent effect on pathogenicity when tested on Galleria mellonella', Fungal Genetics and Biology, Vol. 76: 20-26, March 2015, doi: https://doi.org/10.1016/j.fgb.2015.01.003. This manuscript version is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).Mycoviruses are a specific group of viruses that naturally infect and replicate in fungi. The importance of mycoviruses was revealed after their effects were identified not only in economically important fungi but also in the human pathogenic fungus Aspergillus fumigatus. The latter was shown recently to harbor at least three different types of mycoviruses including a chrysovirus, a partitivirus and an as yet uncharacterized virus. Assessment of virulence in the presence and absence of mycoviruses in A. fumigatus is pivotal to understanding its pathogenicity. Here, we have investigated, for the first time, the effects of mycoviruses on the pathogenicity of A. fumigatus as assessed using larvae of the greater wax moth Galleria mellonella. In order to observe the effects of mycoviruses on pathogenicity, G. mellonella were injected with virus-free and virus-infected isolates of A. fumigatus and post-infection survival times were analyzed along with the fungal burden. Neither chrysovirus nor partitivirus infection affected fungal pathogenicity when survival rates were assessed which, for the chrysovirus, agreed with a previous study on murine pathogenicity. However statistically significant differences were observed in survival rates and fungal burden in the presence of the uncharacterized A78 virus. Here we show, for the first time, the effects of a partitivirus and an uncharacterized A78 virus on the pathogenicity of A. fumigatusPeer reviewedFinal Accepted Versio

    Magnetically Mediated Transparent Conductors: In2_2O3_3 doped with Mo

    Get PDF
    First-principles band structure investigations of the electronic, optical and magnetic properties of Mo-doped In2_2O3_3 reveal the vital role of magnetic interactions in determining both the electrical conductivity and the Burstein-Moss shift which governs optical absorption. We demonstrate the advantages of the transition metal doping which results in smaller effective mass, larger fundamental band gap and better overall optical transmission in the visible -- as compared to commercial Sn-doped In2_2O3_3. Similar behavior is expected upon doping with other transition metals opening up an avenue for the family of efficient transparent conductors mediated by magnetic interactions

    Groundwater reinjection and heat dissipation: lessons from the operation of a large groundwater cooling system in Central London

    Get PDF
    The performance of a large open-loop groundwater cooling scheme in a shallow alluvial aquifer at a prominent public building in Central London has been monitored closely over its first 2 years of operation. The installed system provided cooling to the site continuously for a period of 9 months between June 2012 and April 2013. During this period, c. 131300 m3 of groundwater was abstracted from a single pumping well and recharged into a single injection borehole. The amount of heat rejected in this period amounts to c. 1.37 GWh. A programme of hydraulic testing was subsequently undertaken over a 3 month period between July and October 2013 to evaluate the performance of the injection borehole. The data indicate no significant change in injection performance between commissioning trials undertaken in 2010 and the most recent period of testing, as evidenced by comparison of injection pressures for given flow rates in 2010 and 2013. Continuous temperature monitoring of the abstracted water, the discharge and a number of observation wells demonstrates the evolution of a heat plume in the aquifer in response to heat rejection and subsequent dissipation of this heat during the 18 month planned cessation

    High-efficiency heteroepitaxial InP solar cells

    Get PDF
    High-efficiency, thin-film InP solar cells grown heteroepitaxially on GaAs and Si single-crystal bulk substrates are being developed as a means of eliminating the problems associated with using single-crystal InP substrates. A novel device structure employing a compositionally graded Ga(x)In(1-x)As layer between the bulk substrate and the InP cell layers is used to reduce the dislocation density and improve the minority carrier properties in the InP. The structures are grown in a continuous sequence of steps using computer-controlled atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE). Dislocation densities as low as 3 x 10(exp 7) sq cm and minority carrier lifetimes as high as 3.3 ns are achieved in the InP layers with this method using both GaAs or Si substrates. Structures prepared in this fashion are also completely free of microcracks. These results represent a substantial improvement in InP layer quality when compared to heteroepitaxial InP prepared using conventional techniques such as thermally cycled growth and post-growth annealing. The present work is is concerned with the fabrication and characterization of high-efficiency, thin-film InP solar cells. Both one-sun and concentrator cells were prepared for device structures grown on GaAs substrates. One-cell cells have efficiencies as high as 13.7 percent at 25 C. However, results for the concentrator cells are emphasized. The concentrator cell performance is characterized as a function of the air mass zero (AM0) solar concentration ratio and operating temperature. From these data, the temperature coefficients of the cell performance parameters are derived as a function of the concentration ratio. Under concentration, the cells exhibit a dramatic increase in efficiency and an improved temperature coefficient of efficiency. At 25 C, a peak conversion efficiency of 18.9 percent is reported. At 80 C, the peak AM0 efficiency is 15.7 percent at 75.6 suns. These are the highest efficiencies yet reported for InP heteroepitaxial cells. Approaches for further improving the cell performance are discussed

    InP concentrator solar cells for space applications

    Get PDF
    The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells is described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). A preliminary assessment of the effects of grid collection distance and emitter sheet resistance on cell performance is presented. At concentration ratios of over 100, cells with AM0 efficiencies in excess of 21 percent at 25 C and 19 percent at 80 C are reported. These results indicate that high-efficiency InP concentrator cells can be fabricated using existing technologies. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined

    You measure what you value: how a Middle Eastern Polytechnic developed a sustainable review and improvement framework

    Get PDF
    Bahrain Polytechnic (BP) was established in 2008 to fill a gap in the Kingdom’s labour market for work ready graduates. Around that time newspaper reports highlighted a lack of quality and consistency in some private universities in Bahrain. Bahrain’s Qualifications and Quality Assurance Authority was in development so, in the absence of national guidelines, BP developed its own Quality Assurance Model to gain stakeholder confidence in the quality of its education. This comprised a Quality Management System with policies and procedures, and a self-review loop. The government was quick to redress quality concerns threatening the reputation of Higher Education in the Kingdom and today there are many external auditing agencies, each with their own paradigms and criteria. However, evidence that accountability audits produce quality improvement where it matters most - in the classroom - is lacking. An essential element in this failure is the dissolution of trust. This case-study tells of BP’s journey towards a more efficient and effective Self-Review model that shifts the focus from accountability and control to improvement and sustainability by taking into account Bahrain’s cultural context and the Polytechnic’s unique curricula and building on existing relationships to engender trust and commitment

    Functional interplay between E2F7 and ribosomal rRNA gene transcription regulates protein synthesis

    Get PDF
    A prerequisite for protein synthesis is the transcription of ribosomal rRNA genes by RNA polymerase I (Pol I), which controls ribosome biogenesis. UBF (upstream binding factor) is one of the main Pol I transcription factors located in the nucleolus that activates rRNA gene transcription. E2F7 is an atypical E2F family member that acts as a transcriptional repressor of E2F target genes, and thereby contributes to cell cycle arrest. Here, we describe an unexpected role for E2F7 in regulating rRNA gene transcription. We have found that E2F7 localises to the perinucleolar region, and further that E2F7 is able to exert repressive effects on Pol I transcription. At the mechanistic level, this is achieved in part by E2F7 hindering UBF recruitment to the rRNA gene promoter region, and thereby reducing rRNA gene transcription, which in turn compromises global protein synthesis. Our results expand the target gene repertoire influenced by E2F7 to include Pol I-regulated genes, and more generally suggest a mechanism mediated by effects on Pol I transcription where E2F7 links cell cycle arrest with protein synthesis

    Developing a viva exam to assess clinical reasoning in pre-registration osteopathy students

    Get PDF
    Background: Clinical reasoning (CR) is a core capability for health practitioners. Assessing CR requires a suite of tools to encompass a wide scope of contexts and cognitive abilities. The aim of this project was to develop an oral examination and grading rubric for the assessment of CR in osteopathy, trial it with senior students in three accredited university programs in Australia and New Zealand, and to evaluate its content and face validity. Methods: Experienced osteopathic academics developed 20 cases and a grading rubric. Thirty senior students were recruited, 10 from each university. Twelve fourth year and 18 fifth year students participated. Three members of the research team were trained and examined students at an institution different from their own. Two cases were presented to each student participant in a series of vignettes. The rubric was constructed to follow a set of examiner questions that related to each attribute of CR. Data were analysed to explore differences in examiner marking, as well as relationships between cases, institutions, and different year levels. A non-examining member of the research team acted as an observer at each location. Results: No statistical difference was found between the total and single question scores, nor for the total scores between examiners. Significant differences were found between 4th and 5th students on total score and a number of single questions. The rubric was found to be internally consistent. Conclusions: A viva examination of clinical reasoning, trialled with senior osteopathy students, showed face and content validity. Results suggested that the viva exam may also differentiate between 4th and 5th year students’ capabilities in CR. Further work is required to establish the reliability of assessment, to further refine the rubric, and to train examiners before it is implemented as a high-stakes assessment in accredited osteopathy programs

    InP/Ga0.47In0.53As monolithic, two-junction, three-terminal tandem solar cells

    Get PDF
    The work presented has focussed on increasing the efficiency of InP-based solar cells through the development of a high-performance InP/Ga(0.47)In(0.53)As two-junction, three-terminal monolithic tandem cell. Such a tandem is particularly suited to space applications where a radiation-hard top cell (i.e., InP) is required. Furthermore, the InP/Ga(0.47)In(0.53)As materials system is lattice matched and offers a top cell/bottom cell bandgap differential (0.60 eV at 300 K) suitable for high tandem cell efficiencies under AMO illumination. A three-terminal configuration was chosen since it allows for independent power collection from each subcell in the monolithic stack, thus minimizing the adverse impact of radiation damage on the overall tandem efficiency. Realistic computer modeling calculations predict an efficiency boost of 7 to 11 percent from the Ga(0.47)In(0.53)As bottom cell under AMO illumination (25 C) for concentration ratios in the 1 to 1000 range. Thus, practical AMO efficiencies of 25 to 32 percent appear possible with the InP/Ga(0.47)In(0.53)As tandem cell. Prototype n/p/n InP/Ga(0.47)In(0.53)As monolithic tandem cells were fabricated and tested successfully. Using an aperture to define the illuminated areas, efficiency measurements performed on a non-optimized device under standard global illumination conditions (25 C) with no antireflection coating (ARC) give 12.2 percent for the InP top cell and 3.2 percent for the Ga(0.47)In(0.53)As bottom cell, yielding an overall tandem efficiency of 15.4 percent. With an ARC, the tandem efficiency could reach approximately 22 percent global and approximately 20 percent AMO. Additional details regarding the performance of individual InP and Ga(0.47)In(0.53)As component cells, fabrication and operation of complete tandem cells and methods for improving the tandem cell performance, are also discussed
    • …
    corecore