1,029 research outputs found

    Chemical Evolution of the Galactic Bulge as Derived from High-Resolution Infrared Spectroscopy of K and M Red Giants

    Get PDF
    We present chemical abundances in K and M red-giant members of the Galactic bulge derived from high-resolution infrared spectra obtained with the Phoenix spectrograph on Gemini-South. The elements studied are carbon, nitrogen, oxygen, sodium, titanium, and iron. The evolution of C and N abundances in the studied red-giants show that their oxygen abundances represent the original values with which the stars were born. Oxygen is a superior element for probing the timescale of bulge chemical enrichment via [O/Fe] versus [Fe/H]. The [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Titanium also behaves similarly to oxygen with respect to iron. Based on these elevated values of [O/Fe] and [Ti/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a more rapid chemical enrichment than the halo. In addition, there are declines in both [O/Fe] and [Ti/Fe] in those bulge targets with the largest Fe abundances, signifying another source affecting chemical evolution: perhaps Supernovae of Type Ia. Sodium abundances increase dramatically in the bulge with increasing metallicity, possibly reflecting the metallicity dependant yields from supernovae of Type II, although Na contamination from H-burning in intermediate mass stars cannot be ruled out.Comment: ApJ in pres

    Exchange Interaction in Binuclear Complexes with Rare Earth and Copper Ions: A Many-Body Model Study

    Full text link
    We have used a many-body model Hamiltonian to study the nature of the magnetic ground state of hetero-binuclear complexes involving rare-earth and copper ions. We have taken into account all diagonal repulsions involving the rare-earth 4f and 5d orbitals and the copper 3d orbital. Besides, we have included direct exchange interaction, crystal field splitting of the rare-earth atomic levels and spin-orbit interaction in the 4f orbitals. We have identified the inter-orbital 4f4f repulsion, Uff_{ff} and crystal field parameter, Δf\Delta_f as the key parameters involved in controlling the type of exchange interaction between the rare earth 4f4f and copper 3d spins. We have explored the nature of the ground state in the parameter space of Uff_{ff}, Δf\Delta_f, spin-orbit interaction strength λ\lambda and the 4f4f filling nf_f. We find that these systems show low-spin or high-spin ground state depending on the filling of the 4f4f levels of the rare-earth ion and ground state spin is critically dependent on Uff_{ff} and Δf\Delta_f. In case of half-filling (Gd(III)) we find a reentrant low-spin state as Uff_{ff} is increased, for small values of Δf\Delta_f, which explains the recently reported apparent anomalous anti-ferromagnetic behaviour of Gd(III)-radical complexes. By varying Uff_{ff} we also observe a switch over in the ground state spin for other fillings . We have introduced a spin-orbit coupling scheme which goes beyond L-S or j-j coupling scheme and we find that spin-orbit coupling does not significantly alter the basic picture.Comment: 22 pages, 11 ps figure

    Phenotypic variability of Leptosphaeria lindquistii (anamorph: Phoma macdonaldii), a fungal pathogen of sunflower

    Get PDF
    Growth of 17 isolates of Phoma macdonaldii , the causal agent of sunflower black stem, was investigated for response to pH and temperature, and for morphology and asexual morphogenesis (pycnidiogenesis and pycnidium size). For all isolates, the optimum pH for growth was between 4 and 5, and the optimum temperature varied between 20 and 30°C and radial growth was slowest at 5 and 35°C. Significant differences in the number and size of pycnidia were observed between isolates. Pycniospore germination was investigated under various conditions in five isolates chosen for their geographical origins, pigmentation, optimum growth temperature and pycnidiogenesis. Increasing the concentration from 106 to 107 pycniospores per mL decreased the germination rate. The optimum temperature for pycniospore germination varied between 15 and 30°C, depending on the isolate, and the optimum and maximum pH values were 5 and 7, respectively. The optimum and minimum relative humidities allowing pycniospore germination were 100 and 95%, respectively. Pycniospore germination was photo‐independent. An artificial inoculation method was developed and the aggressiveness of the pathogen was assessed on a susceptible sunflower cultivar, using a 1–9 scale that integrated the percentage of necrotic area on the cotyledon petiole at the stage when the first pair of leaves was fully developed. Significant differences in aggressiveness were observed among the 17 isolates. The parameters investigated clearly suggest the occurrence of a wide phenotypic variability in Phoma macdonaldii

    Magnetic and thermal properties of 4f-3d ladder-type molecular compounds

    Full text link
    We report on the low-temperature magnetic susceptibilities and specific heats of the isostructural spin-ladder molecular complexes L2_{2}[M(opba)]_{3\cdot xDMSOy\cdot yH2_{2}O, hereafter abbreviated with L2_{2}M3_{3} (where L = La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing complexes (with the exception of La2_{2}Cu3_{3}) undergo long range magnetic order at temperatures below 2 K, and that for Gd2_{2}Cu3_{3} this ordering is ferromagnetic, whereas for Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} it is probably antiferromagnetic. The susceptibilities and specific heats of Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} above TCT_{C} have been explained by means of a model taking into account nearest as well as next-nearest neighbor magnetic interactions. We show that the intraladder L--Cu interaction is the predominant one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy and Ho containing complexes, strong crystal field effects on the magnetic and thermal properties have to be taken into account. The magnetic coupling between the (ferromagnetic) ladders is found to be very weak and is probably of dipolar origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Proteasomal degradation of the histone acetyl transferase p300 contributes to beta-cell injury in a diabetes environment

    Get PDF
    In type 2 diabetes, amyloid oligomers, chronic hyperglycemia, lipotoxicity, and pro-inflammatory cytokines are detrimental to beta-cells, causing apoptosis and impaired insulin secretion. The histone acetyl transferase p300, involved in remodeling of chromatin structure by epigenetic mechanisms, is a key ubiquitous activator of the transcriptional machinery. In this study, we report that loss of p300 acetyl transferase activity and expression leads to beta-cell apoptosis, and most importantly, that stress situations known to be associated with diabetes alter p300 levels and functional integrity. We found that proteasomal degradation is the mechanism subserving p300 loss in beta-cells exposed to hyperglycemia or pro-inflammatory cytokines. We also report that melatonin, a hormone produced in the pineal gland and known to play key roles in beta-cell health, preserves p300 levels altered by these toxic conditions. Collectively, these data imply an important role for p300 in the pathophysiology of diabetes

    Persistent Phenotypic Responses of Human Mammary Epithelial Cells Induced by Ionizing Radiation

    Get PDF
    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. We have shown that irradiating human mammary epithelial cells (HMEC) cultured with that transforming growth factor β1 (TGFβ) can generate a persistent phenotype in daughter cells characterized by spindle cell morphology, increased mesenchymal markers, decreased epithelial markers and increased cellular motility and invasion, which are hallmarks of epithelial to mesenchymal transition (EMT). Neither radiation nor TGFβ alone elicited EMT, although IR increased chronic TGFβ signaling and activity. Gene expression profiling revealed that double-treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes nonmalignant HMEC to undergo TGFβ-mediated EMT. Consistent with this, Erk phosphorylation was transiently induced by irradiation and persisted in irradiated cells treated with TGFβ, and inhibition of Erk activation, blocked the EMT phenotype. Preliminary studies suggest that eqi-toxic doses of sparsely and densely ionizing radiation resulted in comparable EMT when cells were cultivated in the presence of TGFβ, Furthermore radiation dose response studies show that this effect has a very low threshold in that a single exposure of 3-200 cGy radiation elicits the ‘same’ phenotypic switch, which is consistent with non-targeted effects. Together, these data show that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to radiation carcinogenesis

    High-field magnetization study of the S = 1/2 antiferromagnetic Heisenberg chain [PM Cu(NO3_3)2_2(H2_2O)2_2]n_n with a field-induced gap

    Full text link
    We present a high-field magnetization study of the SS = 1/2 antiferromagnetic Heisenberg chain [PM Cu(NO3_3)2_2(H2_2O)2_2]n_n. For this material, as result of the Dzyaloshinskii-Moriya interaction and a staggered gg tensor, the ground state is characterized by an anisotropic field-induced spin excitation gap and a staggered magnetization. Our data reveal the qualitatively different behavior in the directions of maximum and zero spin excitation gap. The data are analyzed via exact diagonalization of a linear spin chain with up to 20 sites and on basis of the Bethe ansatz equations, respectively. For both directions we find very good agreement between experimental data and theoretical calculations. We extract the magnetic coupling strength J/kBJ/k_B along the chain direction to 36.3(5) K and determine the field dependence of the staggered magnetization component msm_s.Comment: 5 pages, 2 figures (minor changes to manuscript and figures

    Persistence of Gamma-H2AX Foci in Irradiated Bronchial Cells Correlates with Susceptibility to Radiation Associated Lung Cancer in Mice

    Get PDF
    The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in their ability to efficiently repair DNA double strand breaks resulting from radiation exposure. We phenotyped mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA double strand breaks during protracted radiation exposures. We monitored persistent gamma-H2AX radiation induced foci (RIF) 24 hours after exposure to chronic gamma-rays as a surrogate marker for repair deficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/cHeN founder strain. We observed a very strong correlation R2 = 79.18%, P < 0.001) between the level of persistent RIF and radiogenic lung cancer percent incidence measured in the same strains. Interestingly, spontaneous levels of foci in non-irradiated strains also showed good correlation with lung cancer incidence (R2=32.74%, P =0.013). These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains and that high levels of spontaneous DNA damage is also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that such phenotyping assay could be used to detect radiogenic lung cancer susceptibility in humans

    Genetic and molecular characterization of bud dormancy in apple: deciphering candidate gene roles in dormancy regulation.

    Get PDF
    Dormancy is an adaptive mechanism that enables plants to survive unfavorable climatic conditions, for example during winter, and allows flowering to occur only when the conditions are more permissive, typically in spring
    corecore