51 research outputs found
InP/InGaAs photodetector on SOI photonic circuitry
We present an InP-based membrane p-i-n photodetector on a silicon-on-insulator sample containing a Si-wiring photonic circuit that is suitable for use in optical interconnections on Si integrated circuits (ICs). The detector mesa footprint is 50 mu m(2), which is the smallest reported to date for this kind of device, and the junction capacitance is below 10 fF, which allows for high integration density and low dynamic power consumption. The measured detector responsivity and 3-dB bandwidth are 0.45 A/W and 33 GHz, respectively. The device fabrication is compatible with wafer-scale processing steps, guaranteeing compatibility toward future-generation electronic IC processing
The 2018 GaN Power Electronics Roadmap
Gallium nitride (GaN) is a compound semiconductor that has tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here
Therapeutic effects of pyrrolidine dithiocarbamate on acute lung injury in rabbits
<p>Abstract</p> <p>Background</p> <p>Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is an early characteristic of multiple organ dysfunction, responsible for high mortality and poor prognosis in patients. The present study aims to evaluate therapeutic effects and mechanisms of pyrrolidine dithiocarbamate (PDTC) on ALI.</p> <p>Methods</p> <p>Alveolar-arterial oxygen difference, lung tissue edema and compromise, NF-κB activation in polymorphonuclear neutrophil (PMN), and systemic levels of tumor necrosis factor-alpha (TNFa) and intercellular adhesion molecule-1 (ICAM-1) in rabbits induced by the intravenous administration of lipopolysaccharide (LPS) and treated with PDTC. Production of TNFa and IL-8, activation of Cathepsin G, and PMNs adhesion were also measured.</p> <p>Results</p> <p>The intravenous administration of PDTC had partial therapeutic effects on endotoxemia-induced lung tissue edema and damage, neutrophil influx to the lung, alveolar-capillary barrier dysfunction, and high systemic levels of TNFa and ICAM-1 as well as over-activation of NF-κB. PDTC could directly and partially inhibit LPS-induced TNFa hyper-production and over-activities of Cathepsin G. Such inhibitory effects of PDTC were related to the various stimuli and enhanced through combination with PI3K inhibitor.</p> <p>Conclusion</p> <p>NF-κB signal pathway could be one of targeting molecules and the combination with other signal pathway inhibitors may be an alternative of therapeutic strategies for ALI/ARDS.</p
High Yield Production Process for Shigella Outer Membrane Particles
Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been problematic. We developed a high yielding production process of genetically derived outer membrane particles from the human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of fermentation were obtained from cultures of S. sonnei ΔtolR ΔgalU at optical densities of 30–45 in a 5 L fermenter. Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process. Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules of Membrane Antigens (GMMA) for production of vaccines from Gram-negative bacteria
The 2018 GaN power electronics roadmap
Gallium nitride (GaN) is a compound semiconductor that has tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here
ESR1/SYNE1 Polymorphism and Invasive Epithelial Ovarian Cancer Risk: An Ovarian Cancer Association Consortium Study
We genotyped 13 single nucleotide polymorphisms (SNPs) in the estrogen receptor alpha gene (ESR1) region in three population-based case-control studies of epithelial ovarian cancer conducted in the United States, comprising a total of 1,128 and 1,866 non-Hispanic white invasive cases and controls, respectively. A SNP 19 kb downstream of ESR1 (rs2295190, G-to-T change) was associated with invasive ovarian cancer risk, with a per-T-allele odds ratio (OR) of 1.24 (95% confidence interval (CI), 1.06–1.44, p=0.006). rs2295190 is a non-synonymous coding SNP in a neighboring gene called spectrin repeat containing, nuclear envelope 1 (SYNE1) which is involved in nuclear organization and structural integrity, function of the Golgi apparatus, and cytokinesis. An isoform encoded by SYNE1 has been reported to be downregulated in ovarian and other cancers. rs2295190 was genotyped in an additional 12 studies through the Ovarian Cancer Association Consortium, with 5,279 invasive epithelial cases and 7,450 controls. The per-T-allele OR for this 12-study set was 1.09 (95% CI, 1.02–1.17, p=0.017). Results for the serous subtype in the 15 combined studies were similar to those overall (n=3,545; OR=1.09, 95% CI, 1.01–1.18, p=0.025), and our findings were strongest for the mucinous subtype (n=447; OR=1.32, 95% CI, 1.11–1.58, p=0.002). No association was observed for the endometrioid subtype. In an additional analysis of 1,459 borderline ovarian cancer cases and 7,370 controls, rs2295190 was not associated with risk. These data provide suggestive evidence that the rs2295190 T allele, or another allele in linkage disequilibrium with it, may be associated with increased risk of invasive ovarian cancer
- …