217 research outputs found

    Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues

    Get PDF
    The large use of nonlinear laser scanning microscopy in the past decade paved the way for potential clinical application of this imaging technique. Modern nonlinear microscopy techniques offer promising label-free solutions to improve diagnostic performances on tissues. In particular, the combination of multiple nonlinear imaging techniques in the same microscope allows integrating morphological with functional information in a morpho-functional scheme. Such approach provides a high-resolution label-free alternative to both histological and immunohistochemical examination of tissues and is becoming increasingly popular among the clinical community. Nevertheless, several technical improvements, including automatic scanning and image analysis, are required before the technique represents a standard diagnostic method. In this review paper, we highlight the capabilities of multimodal nonlinear microscopy for tissue imaging, by providing various examples on colon, arterial and skin tissues. The comparison between images acquired using multimodal nonlinear microscopy and histology shows a good agreement between the two methods. The results demonstrate that multimodal nonlinear microscopy is a powerful label-free alternative to standard histopathological methods and has the potential to find a stable place in the clinical setting in the near future

    Novel synthetic approach to heteroatom doped polycyclic aromatic hydrocarbons: Optimizing the bottom-up approach to atomically precise doped nanographenes

    Get PDF
    The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical–physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once “fundamental research” into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds

    Observation of an improved healing process in superficial skin wounds after irradiation with a blue-LED haemostatic device

    Get PDF
    The healing process of superficial skin wounds treated with a blue-LED haemostatic device is studied. Four mechanical abrasions are produced on the back of 10 Sprague Dawley rats: two are treated with the blue-LED device, while the other two are left to naturally recover. Visual observations, non-linear microscopic imaging, as well as histology and immunofluorescence analyses are performed 8 days after the treatment, demonstrating no adverse reactions neither thermal damages in both abraded areas and surrounding tissue. A faster healing process and a better-recovered skin morphology are observed: the treated wounds show a reduced inflammatory response and a higher collagen content. Blue LED induced photothermal effect on superficial abrasions

    Bimodal Spectroscopy of Formalin Fixed Samples to Discriminate Dysplastic and Tumor Brain Tissues

    Get PDF
    Biomedical spectroscopy has gained attention in the past few years for disease diagnosis. Fluorescence and Raman spectroscopies provide finger-print information related to biochemical and morphological alterations when tissues progress from the normal to a malignant stage. Usually, freshly excised tissue specimens are preferred for bio-spectroscopic studies. However, ethical issues, sample availability and distance between the surgery room and the laboratory provide an impelling restriction for in-vitro spectroscopic studies using freshly excised samples. After surgical resection tissues are fixed in 4% formalin for histological studies under a light microscope. The process of fixation prevents degradation of tissues. In this study, we probe the use of formalin fixed sample for differentiating normal and dysplastic brain tissues using fluorescence and Raman spectroscopies. It was found that fluorescence spectral profile changes in the wavelength range from 550-750 nm between dysplastic and tumor samples. Also, significant differences were found in the Raman spectral profiles of such samples. The results indicate a potential diagnostic application of spectroscopy in formalin fixed brain samples for differentiating dysplastic and tumor brain tissues

    Tandem chemiluminescence-flow injection analysis for dimethoate determination

    Full text link
    This work was supported by the Ministry of Education and Science of Spain (Project CTM2006-11991) and FEDER funds.Catalá Icardo, M.; López Paz, JL.; Choves Barón, C. (2010). Tandem chemiluminescence-flow injection analysis for dimethoate determination. Luminescence. 25:235-236. https://doi.org/10.1002/bio.1217S2352362

    Protein conformation and molecular order probed by second-harmonic-generation microscopy

    Get PDF
    Second-harmonic-generation (SHG) microscopy has emerged as a powerful tool to image unstained living tissues and probe their molecular and supramolecular organization. In this article, we review the physical basis of SHG, highlighting how coherent summation of second-harmonic response leads to the sensitivity of polarized SHG to the three-dimensional distribution of emitters within the focal volume. Based on the physical description of the process, we examine experimental applications for probing the molecular organization within a tissue and its alterations in response to different biomedically relevant conditions. We also describe the approach for obtaining information on molecular conformation based on SHG polarization anisotropy measurements and its application to the study of myosin conformation in different physiological states of muscle. The capability of coupling the advantages of nonlinear microscopy (micrometer-scale resolution in deep tissue) with tools for probing molecular structure in vivo renders SHG microscopy an extremely powerful tool for the advancement of biomedical optics, with particular regard to novel technologies for molecular diagnostic in vivo. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)

    Multidimensional non-linear laser imaging of Basal Cell Carcinoma

    Get PDF
    We have used a multidimensional non-linear laser imaging approach to visualize ex-vivo samples of basal cell carcinoma (BCC). A combination of several non-linear laser imaging techniques involving fluorescence lifetime, multispectral two-photon and second-harmonic generation imaging has been used to image different skin layers. This approach has elucidated some morphological (supported by histopathological images), biochemical, and physiochemical differences of the healthy samples with respect to BCC ones. In particular, in comparison with normal skin, BCC showed a blue-shifted fluorescence emission, a higher fluorescence response at 800 nm excitation wavelength and a slightly longer mean fluorescence lifetime. Finally, the use of aminolevulinic acid as a contrast agent has been demonstrated to increase the constrast in tumor border detection. The results obtained provide further support for in-vivo non-invasive imaging of Basal Cell Carcinoma

    Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits

    Get PDF
    Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application
    corecore