453 research outputs found
Intermediate reading exercises for use with the Durrell Analysis of Reading Difficulty.
Thesis (Ed.M.)--Boston Universit
Quantum Noise and Polarization Fluctuations in Vertical Cavity Surface Emitting Lasers
We investigate the polarization fluctuations caused by quantum noise in
quantum well vertical cavity surface emitting lasers (VCSELs). Langevin
equations are derived on the basis of a generalized rate equation model in
which the influence of competing gain-loss and frequency anisotropies is
included. This reveals how the anisotropies and the quantum well confinement
effects shape the correlations and the magnitude of fluctuations in ellipticity
and in polarization direction. According to our results all parameters used in
the rate equations may be obtained experimentally from precise time resolved
measurements of the intensity and polarization fluctuations in the emitted
laser light. To clarify the effects of anisotropies and of quantum well
confinement on the laser process in VCSELs we therefore propose time resolved
measurements of the polarization fluctuations in the laser light. In
particular, such measurements allow to distinguish the effects of frequency
anisotropy and of gain-loss anisotropy and would provide data on the spin
relaxation rate in the quantum well structure during cw operation as well as
representing a new way of experimentally determinig the linewidth enhancement
factor alpha.Comment: 16 pages and 3 Figures, RevTex, to be published in Phys. Rev.
Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency
Includes bibliographical references (page 209).Index-guided vertical cavity top-surface emitting laser diodes have been fabricated from an all epitaxial structure with conducting mirrors by selective lateral oxidation of AlGaAs. Low voltage, a 78% slope efficiency, and a 350μA threshold current in a single device combine to yield a maximum power conversion efficiency of 50% at less than a 2mA drive current. The device operates in a single mode up to 1.5mW
Vectorial dissipative solitons in vertical-cavity surface-emitting Lasers with delays
We show that the nonlinear polarization dynamics of a vertical-cavity
surface-emitting laser placed into an external cavity leads to the formation of
temporal vectorial dissipative solitons. These solitons arise as cycles in the
polarization orientation, leaving the total intensity constant. When the cavity
round-trip is much longer than their duration, several independent solitons as
well as bound states (molecules) may be hosted in the cavity. All these
solutions coexist together and with the background solution, i.e. the solution
with zero soliton. The theoretical proof of localization is given by the
analysis of the Floquet exponents. Finally, we reduce the dynamics to a single
delayed equation for the polarization orientation allowing interpreting the
vectorial solitons as polarization kinks.Comment: quasi final resubmission version, 12 pages, 9 figure
High-frequency modulation of oxide-confined vertical cavity surface emitting lasers
Includes bibliographical references (page 458).High-speed studies of packaged, submilliampere threshold, oxide-confined vertical cavity surface emitting lasers show modulation bandwidths > 16GHz. Very high modulation current efficiency factors occur at low bias but decrease as the modulation bandwidth and frequency of the relative intensity noise peak saturate at higher currents
Vitamin D intake is associated with insulin sensitivity in African American, but not European American, women
<p>Abstract</p> <p>Background</p> <p>The prevalence of type 2 diabetes is higher among African Americans (AA) vs European Americans (EA), independent of obesity and other known confounders. Although the reason for this disparity is not known, it is possible that relatively low levels of vitamin D among AA may contribute, as vitamin D has been positively associated with insulin sensitivity in some studies. The objective of this study was to test the hypothesis that dietary vitamin D would be associated with a robust measure of insulin sensitivity in AA and EA women.</p> <p>Methods</p> <p>Subjects were 115 African American (AA) and 137 European American (EA) healthy, premenopausal women. Dietary intake was determined with 4-day food records; the insulin sensitivity index (S<sub>I</sub>) with a frequently-sampled intravenous glucose tolerance test and minimal modeling; the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) with fasting insulin and glucose; and body composition with dual-energy X-ray absorptiometry.</p> <p>Results</p> <p>Vitamin D intake was positively associated with S<sub>I </sub>(standardized β = 0.18, <it>P </it>= 0.05) and inversely associated with HOMA-IR (standardized β = -0.26, <it>P </it>= 0.007) in AA, and the relationships were independent of age, total body fat, energy intake, and % kcal from fat. Vitamin D intake was not significantly associated with indices of insulin sensitivity/resistance in EA (standardized β = 0.03, <it>P </it>= 0.74 and standardized β = 0.02, <it>P </it>= 0.85 for S<sub>I </sub>and HOMA-IR, respectively). Similar to vitamin D, dietary calcium was associated with S<sub>I </sub>and HOMA-IR among AA but not EA.</p> <p>Conclusions</p> <p>This study provides novel findings that dietary vitamin D and calcium were independently associated with insulin sensitivity in AA, but not EA. Promotion of these nutrients in the diet may reduce health disparities in type 2 diabetes risk among AA, although longitudinal and intervention studies are required.</p
Cooperative coupling of ultracold atoms and surface plasmons
Cooperative coupling between optical emitters and light fields is one of the
outstanding goals in quantum technology. It is both fundamentally interesting
for the extraordinary radiation properties of the participating emitters and
has many potential applications in photonics. While this goal has been achieved
using high-finesse optical cavities, cavity-free approaches that are broadband
and easy to build have attracted much attention recently. Here we demonstrate
cooperative coupling of ultracold atoms with surface plasmons propagating on a
plane gold surface. While the atoms are moving towards the surface they are
excited by an external laser pulse. Excited surface plasmons are detected via
leakage radiation into the substrate of the gold layer. A maximum Purcell
factor of is reached at an optimum distance of
from the surface. The coupling leads to the observation of
a Fano-like resonance in the spectrum.Comment: 9 pages, 4 figure
Recommended from our members
Combined photonics and MEMs function demonstration
The authors have recently demonstrated two prototypes where photonics and microelectromechanical system (MEMs) technologies have been integrated to show proof-of-principle functionality for weapon surety functions. These activities are part of a program which is exploring the miniaturization of electromechanical components for making weapon systems safer. Such miniaturization can lead to a low-cost, small, high-performance ``systems-on-a-chip``, and have many applications ranging from advanced military systems to large-volume commercial markets like automobiles, rf or land-based communications networks and equipment, or commercial electronics. One of the key challenges in realization of the microsystem is integration of several technologies including digital electronics; analog and rf electronics, optoelectronics (light emitting and detecting devices and circuits), sensors and actuators, and advanced packaging technologies. In this work the authors describe efforts in integrating MEMs and photonic functions and the fabrication constraints on both system components. Here, they discuss two examples of integration of MEMs and a photonic device. In the first instance, a MEMs locking device pin is driven by a voltage generated by photovoltaic cells connected in series, which are driven by a laser. In the second case, a VCSEL emitting at 1.06 {micro}m is packaged together with a metallized MEMs shutter. By appropriate alignment to the opening in the shutter, the VCSEL is turned on and off by the movement of the Si chopper wheel
- …