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Abstract15

Geophysicists depend on rock physics relationships to interpret resistivity and seismic16

velocity in terms of rock porosity, but it has proven difficult to capture the effect of pore17

geometry on such relations through simple and easy to apply formulae. Inclusion mod-18

eling relates moduli to porosity through an equivalent grain or pore aspect ratio but of-19

ten fails to account for observed trends, whereas empirical relations can be hard to ex-20

trapolate beyond their range of validity, often giving incorrect results in the low and high21

porosity limits. We show that introducing a power-law relationship between porosity and22

equivalent grain or pore aspect ratio allows inclusion models to reproduce 5 published23

empirical resistivity-porosity and velocity-porosity relationships, providing a first prin-24

ciples basis for extrapolation to other cases of interest. We find the deviation of resis-25

tivity from Archie’s law in carbonates is related to a systematic change of grain shape26

with porosity, and we derive a new relation which fits carbonate resistivity data with sim-27

ilar accuracy to the Humble equation while being correct at high porosity. We then ob-28

tain an analog for the Castagna and Pickett relationships for wet, calcitic rocks, which29

is valid in the low and high porosity limits, giving rise to a new, physically derived Vp/Vs30

versus porosity model.31

1 Introduction32

An ongoing challenge in rock physics modeling is understanding how electrical and33

elastic properties vary with porosity for various rock types. For electrical resistivity, Archie’s34

(Archie, 1942) law is widely believed to produce acceptable results in clean sandstones35

(Glover, Hole, & Pous, 2000). The electrical properties of carbonates, however, are sig-36

nificantly more complex; a property usually attributed to the diversity of pore types present37

(Focke & Munn, 1987; Saleh & Castagna, 2004; Salem & Chilingarian, 1999). A mod-38

ification of Archie’s first law, the Humble (Winsauer, Shearin Jr, Masson, & Williams,39

1952) equation, may be more accurate in the case of complex pore geometries, but is in-40

correct in the high-porosity limit. Other models, such as the Shell (Neustaedter, 1968)41

model, the Borai et al. (1987) model, and the Focke and Munn (1987) relations, are pop-42

ular in modeling the electrical properties of carbonates, however they are all empirical43

modifications of Archie’s first law, and are not evidently grounded in first-principles physics.44

Rock physics models derived from first principles may have the benefit of extrap-45

olating to various rock types, unlike these empirical models which are only applicable46
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to the rocks where they were calibrated. First principles resistivity models for carbon-47

ate rocks, however, are much less developed. In the case of inclusion modeling (Eshelby,48

1957), this is due to the difficulty in approximating carbonate grains or pores with spheres49

and ellipsoids. A notable inclusion model designed specifically for carbonates is that of50

Xu and Payne (2009).51

Just as the electrical properties of carbonates vary with pore types present, the elas-52

tic properties of carbonates are also severely dependent on the pore types present. Anal-53

ogously to the electrical modeling case, significant progress has been made in modeling54

velocity-porosity trends in the siliciclastic environment (E.g., Dvorkin and Nur (1996);55

D.-H. Han, Nur, and Morgan (1986); Raymer, Hunt, and Gardner (1980); Vernik and56

Nur (1992)), however modeling the properties of carbonates, has proven to be more com-57

plex (Kittridge, 2014).58

Modulus-porosity trends are produced using a range of tools, including empirical,59

bounding, and inclusions methods. Empirical methods (E.g., Castagna, Batzle, and Kan60

(1993); D.-H. Han et al. (1986); Pickett (1963)) are useful but challenging to extrapo-61

late beyond their pre-calibrated rock types. Bounding average (E.g., Hill (1952)) and mod-62

ified bound (E.g., A. Nur, Mavko, Dvorkin, and Galmudi (1998); A. M. Nur, Mavko, Dvorkin,63

and Gal (1995)) methods can yield comparable accuracy to more sophisticated models64

(Man & Huang, 2011; Zimmerman, 1991), but can suppress important dependencies on65

microstructure. As in the electrical modeling case, elastic inclusion models (E.g., Berry-66

man (1980); Kuster and Toksöz (1974); Norris (1985)) are often not preferred since the67

advantages of having a physics-based approach can be outweighed by the unrealistic as-68

sumptions made about the pore geometry. Pride et al. (2017) provide analytical rock physics69

models which focus on the relationship between effective pressure the electrical and elas-70

tic properties of a cracked, porous rock by modeling how porosity changes with pressure,71

in combination with how moduli change with porosity.72

Given that the electrical and elastic properties of rocks are influenced by pore or73

grain geometry, obtaining realistic carbonate rock physics trends may require character-74

izing these geometries, which is a prevailing challenge in carbonate rock physics (Ansel-75

metti & Eberli, 1993, 1999; Eberli, Baechle, Anselmetti, & Incze, 2003; Focke & Munn,76

1987; Fournier et al., 2018). Some have proposed incorporating pore geometry effects into77

modeling by using inclusion models with a porosity-dependent pore or grain aspect ra-78
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tio (Kazatchenko, Markov, & Mousatov, 2004; Kazatchenko, Markov, Mousatov, Per-79

vago, et al., 2006; Markov, Kazatchenko, Mousatov, et al., 2004). An aspect ratio which80

is piecewise-constant in porosity was proposed by Kazatchenko et al. (2004), while quadratic81

trends in porosity were considered by Aquino-López, Mousatov, and Markov (2011) and82

Aquino-López, Mousatov, Markov, and Kazatchenko (2015). More recently, Ellis and Kirstet-83

ter (2018) proposed a logarithmic trend between aspect ratio and porosity.84

This paper argues for the adoption of a power-law relationship between pore or grain85

aspect ratio and porosity. We show the power-law relationship, combined with a differ-86

ential effective medium (DEM) model, fits 7 electrical and elastic data sets with lower87

misfit than the single aspect ratio DEM model. This power-law model approximates the88

empirical resistivity-porosity model of Focke and Munn (1987) for carbonates, and has89

comparable accuracy to the Humble (Winsauer et al., 1952) equation in the range of mea-90

sured data while being correct at high porosities like Archie’s (Archie, 1942) first law.91

Through this power-law model, we infer that the observed, non-monotonic formation factor-92

porosity trends in carbonate rocks are the result of an interplay between changing pore93

shape and proportion of resistive material with porosity. When applying the same power-94

law relation to carbonate elastic modeling, we obtain a replacement relationship for the95

empirical Vp−Vs relations of Pickett (Pickett, 1963) and Castagna (Castagna et al., 1993)96

for wet calcitic rocks, which is derived from first principles and correct in both the high97

and low porosity limit. Finally, a new, first-principles Vp/Vs−φ model for porous rocks98

also follows from using this power-law relation in the elastic case.99

We begin by overviewing the rock physics models used in this paper, before per-100

forming inversions on four electrical (Focke & Munn, 1987) data sets for each rock sam-101

ple’s electrical DEM model inclusion aspect ratio. Parameterizing a power-law relation102

for each data set, we forward model cementation factor and formation factor trends, and103

compare results with Archie’s (Archie, 1942) first law, the Humble (Winsauer et al., 1952)104

equation, and the empirical trends of Focke and Munn (1987). We do not consider the105

double layer effect (Waxman & Smits, 1968) in this study, which can be safely neglected106

in the case of clean carbonates.107

We then explore whether there are potential benefits of applying this power-law108

relation to carbonate elastic modeling. We perform inversion using three elastic data sets109

(Bakhorji, 2010; Fournier et al., 2011; Verwer, Braaksma, & Kenter, 2008) and param-110
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eterize the corresponding power-law relation with porosity. We forward model bulk and111

shear modulus trends for each data set, as well as V p−V s and V p/V s−φ trends, and112

compare them with the Pickett (Pickett, 1963) and Castagna (Castagna et al., 1993) em-113

pirical relations. Throughout this paper, we compare the power-law model’s efficiency114

with the typical, single aspect ratio model using the Corrected Akaike Information Cri-115

terion (Hurvich & Tsai, 1989).116

2 Modeling Approaches117

Rock physics trends are generally studied using collections of samples with at least118

one varying characteristic, such as porosity. In this paper, we model the relationships119

between electrical resistivity or elastic moduli and porosity using a number of these col-120

lections, each containing laboratory measurements made on many carbonate core sam-121

ples. We model the data’s effective electrical and elastic properties using the differen-122

tial effective medium (DEM) theory (Berryman, 1992; Mendelson & Cohen, 1982). DEM123

models are constructed by iteratively adding a small volume of ellipsoidal inclusions into124

a background material, homogenizing this composite’s physical properties, and setting125

this new homogenized material as the background material for the subsequent iteration126

until the desired inclusion volume fraction is attained.127

2.1 Electrical Modeling Background128

Mendelson and Cohen (1982) proposed a DEM model to calculate the overall re-129

sistivity of a material consisting of arbitrarily oriented ellipsoidal inclusions in a back-130

ground of conductive material. By making further assumptions - that the inclusions are131

perfectly resistive and the background material is initially water - they derived Archie’s132

(Archie, 1942) first law:133

F = φ−m ; (1)

where φ is the rock’s pore volume fraction or porosity, and m is the rock’s cemen-134

tation factor. The rock’s formation factor, F , can be defined as F = σw/σ in a fully135

saturated rock, where σw is the saturating water’s conductivity and σ is the effective con-136

ductivity. As electrical conductivity and resistivity are mutually reciprocal, F can be viewed137

as the bulk resistivity of a fluid-flooded rock normalized by the resistivity of the flood-138
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ing fluid. We note equation 1 is missing the coefficient a presented in the more general139

Humble (Winsauer et al., 1952) equation (e.g., Glover (2016)):140

F = aφ−m . (2)

Salem and Chilingarian (1999) showed by analysis of well log data that m is strongly141

dependent on the shape of rock grains and pores. This dependence of m on pore geom-142

etry has been investigated throughout the literature (Glover, 2010; Glover et al., 2000;143

Mendelson & Cohen, 1982; Nigmatullin, Dissado, & Soutougin, 1992). Further to this,144

Focke and Munn (1987) showed cementation factor can be non-constant across a range145

of porosities in carbonates. The derivation of Archie’s first law by Mendelson and Co-146

hen (1982) showed cementation factor m is a function of grain aspect ratio through de-147

polarization factors Lp, where p ∈ {1, 2, 3} refers to the grain’s semi-major axes. De-148

polarization factors relate a background electrical potential field in a homogeneous ma-149

terial to the perturbation potential field caused by the presence of an uncharged, con-150

ducting ellipsoidal grain. Following Mendelson and Cohen (1982), this paper is written151

with the convention
∑
Lp = 1.152

The expression for cementation factor m derived by Mendelson and Cohen (1982)153

is:154

m =
1

3

3∑
p=1

〈
(1− Lp)−1

〉
; (3)

where angled brackets 〈·〉 denote the average over the distribution of grain aspect155

ratios present. Mendelson and Cohen (1982) made the simplification L1 = L and L2 =156

L3 = (1 − L)/2 in equation 3 and averaged over all inclusion orientations for a single157

grain aspect ratio to produce:158

m =
5− 3L

3(1− L2)
; (4)

as was also derived by Gelius and Wang (2008) and T. Han, Clennell, Josh, and159

Pervukhina (2015). Fournier et al. (2011, 2014, 2018) refer to the elastic inclusion as-160

pect ratio, α, as the “equivalent pore aspect ratio”, or “EPAR”, which we adopt in this161
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paper. In line with this convention, we abbreviate the electrical DEM model aspect ra-162

tio parameter to “equivalent grain aspect ratio”, or “EGAR”.163

2.2 Elastic Modeling Background164

The elastic DEM model can be described by the coupled differential equations (Berry-165

man, 1992):166

(1− φ)
d

dφ
[K∗ (φ)] = (K2 −K∗ (φ))P (∗2) ; (5)

(1− φ)
d

dφ
[µ∗ (φ)] = (µ2 − µ∗ (φ))Q(∗2) ; (6)

with the initial conditions K∗(0) = K1 and µ∗(0) = µ1. Subscript 1 refers to167

background properties, while subscript 2 refers to inclusion properties. Thus, in the case168

of ellipsoidal pores embedded in a mineral background, K1 and µ1 are the mineral bulk169

and shear moduli; K2 and µ2 are the pore fluid bulk and shear moduli; K∗ and µ∗ are170

the porous rock’s effective bulk and shear moduli; and φ is the porosity.171

Functions P and Q (Berryman, 1980) are geometrical functions which are combi-172

nations of select elements of the T tensor, first put forward by Wu (1966). The T ten-173

sor relates the strain field in a solitary ellipsoidal inclusion to the strain field applied at174

the boundary of the material in which the inclusion sits. As is the T tensor, functions175

P and Q are dependent on the ellipsoidal inclusion’s aspect ratio α, as well as the elas-176

tic moduli and Poisson’s ratios of the inclusion and background materials. It is evident177

from equations 5 and 6 that the inclusion aspect ratio term α is present in this formu-178

lation of the elastic DEM model solely through functions P and Q. The superscript (∗2)179

in equations 5 and 6 indicate P and Q are to be calculated assuming the background ma-180

terial in which the inclusion is embedded is in fact the effective medium material itself.181

3 Description of Data182

We investigate seven public-domain laboratory data sets which come from carbon-183

ate outcrop, surface borehole, and well cores in various global localities. The data have184

varied porosity ranges, diverse pore network architectures, and are approximately monomin-185

eralic. Three of these laboratory data sets have elastic measurements and four have elec-186

trical measurements.187
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We use the carbonate data of Focke and Munn (1987) for our electrical modeling188

tests, as described in Appendix A. We refer to this data as the “FM” data for brevity.189

We use the measurements made on limestones with intergranular porosity; dolostones190

with intergranular porosity; sucrosic dolostones with intercrystalline porosity; and oolitic191

limestones and dolostones with moldic porosity. Sucrosic dolostones are recrystallized192

dolostones with a coarse texture (Dunham, 1962), while moldic pores are fabric-selective193

pores formed by the dissolution of grains (e.g., Choquette and Pray (1970)).194

Following Focke and Munn (1987), we treat the first three rock types as a single195

data set due to their petrophysical similarities, and model the moldic carbonates as three196

separate data sets, partitioned by their permeabilities: 0 ≤ k < 0.1 mD; 0.1 ≤ k < 1197

mD; and 1 ≤ k < 100 mD. We chose to perform our electrical modeling tests on in-198

tergranular and sucrosic carbonate samples as the pore structure associated with these199

rocks can often be reasonably approximated by an inclusion model. In contrast to this,200

we also chose to perform our electrical model testing on carbonates with moldic poros-201

ity as the assumptions of inclusion models can be highly inappropriate when applied to202

these rocks, which can lead to poor modeling outcomes.203

We model three of the four public domain elastic data sets investigated by Kittridge204

(2014). These carbonate laboratory data sets are from Verwer et al. (2008), Bakhorji (2010),205

and Fournier et al. (2011), which we will refer to as the “Verwer”, “Bakhorji”, and “Fournier”206

data sets for brevity. Appendix A and Kittridge (2014) present further details on these207

data sets. For elastic modeling, we use only dry measurements made on the subset of208

cores comprised of approximately 100% calcite in the Bakhorji and Fournier data sets,209

and 100% dolomite in the Verwer data set. This experimental design allows us to per-210

form all elastic modeling assuming a two-phase rock, composed of a single-mineral ma-211

trix and air-filled pore space. In doing this, we minimize modeling uncertainties due to212

errors in matrix and fluid compositions.213

4 Electrical Modeling214

To investigate the relationship between EGAR and porosity in electrical DEM mod-215

eling, we inverted for the EGAR of each core sample individually by minimizing the dif-216

ference in the measured and modeled formation factor using equations 1 and 4, assum-217

ing oblate spheroidal inclusions.218
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We displayed the inverted EGARs against measured sample porosity φ on a log-219

log scale, as shown in Figure 1. The central observation underpinning our modeling is220

the observed linear trend. We placed a line of best fit through each data set’s inverted221

EGARs, with the form:222

logα = C + ξ log φ , (7)

where C and ξ are the constant and gradient of the line of best fit respectively.223
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Figure 1. Inverted EGARs from the FM data using the electrical DEM model of Mendelson

and Cohen (1982). Lines of best fit and their 95% confidence intervals are shown. Subfigures

show a) Interparticle porosity; b) Moldic porosity with 0 ≤ k < 0.1 mD; c) Moldic porosity with

0.1 ≤ k < 1 mD; and d) Moldic porosity with 1 ≤ k < 100 mD.
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Figure 1 also shows each linear fit’s 95% confidence interval on C and ξ for each224

data set, calculated from the linear regressions’ covariance matrices.225

It follows from equation 7 that a best-fitting intercept C and gradient ξ become226

parameters {Γ, ξ} in the power-law:227

α = Γφξ . (8)

As the inverted EGARs in Figure 1 are not independent of φ, we used the solution228

parameters {Γ0, ξ0} which were obtained from the line of best fit for each data set as the229

starting point in a non-linear inversion to find the true solution parameters {Γ∗, ξ∗}. To230

find parameters {Γ∗, ξ∗} for each data set, we inverted the nested equations 1, 4, and231

8, 100 times using a fast simulated annealing algorithm (Szu & Hartley, 1987). We then232

chose the optimal solution for each data set to be that which had the lowest l1-norm mis-233

fit between the logarithm of the data set’s measured and modeled formation factors. We234

chose this misfit metric for electrical inversion to reduce preferential model fitting at low235

porosities. Initial and final solutions, {Γ0, ξ0} and {Γ∗, ξ∗}, are found in Table 1 for all236

data sets, where we see only small updates in solution parameters between the two in-237

versions.238

Substituting equation 8 into equations 4 and 1, assuming rock grains are oblate spheroids,239

we obtain a new, explicit expression for formation factor:240

F = φ

−

5−

3φ−2ξ

1−
arcsin

[
Γφξ

√
φ−2ξ

Γ2 −1

]
√

φ−2ξ

Γ2 −1


Γ2
(

φ−2ξ

Γ2 −1

)

3


Γ2φ2ξ

(√
φ−2ξ

Γ2 −1−arcsin

[
Γφξ

√
φ−2ξ

Γ2 −1

])2

(Γ2φ2ξ−1)3 +1


. (9)

We forward-modeled cementation factor and formation factor trends for all elec-241

trical data sets using parameters {Γ∗, ξ∗} and equation 9, as shown in Figures 2 and 3242

respectively. The set of green curves display the power-law model, which fits both the243

formation and cementation factor data more accurately than the best fitting Archie’s law,244

shown in dashed red. They also approximate the empirical models of Focke and Munn245

(1987), displayed with dotted black lines. The Humble equation may provide a suitable246

fit to the data in Figure 3, however it is incorrect in the limit when φ → 1. As ξ < 0247
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for all four modeled data sets, and as grains are assumed to be oblate spheroids, the power-248

law model is only valid on porosities above that where α = 1. When α = 1, m = 3/2249

and the power-law model reduces to the model of Sen, Scala, and Cohen (1981), indi-250

cated by an empty black square in Figure 2.251
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Figure 2. Forward-modeled cementation factor for the FM data using the power-law DEM

model (solid), Archie’s first law (dashed), and Focke and Munn’s empirical relationships (dotted).

The lower bound of the power-law model’s valid porosity range is also shown (square). Subfigures

show a) Interparticle porosity; b) Moldic porosity with 0 ≤ k < 0.1 mD; c) Moldic porosity with

0.1 ≤ k < 1 mD; and d) Moldic porosity with 1 ≤ k < 100 mD.

Table 1 summarizes the electrical inversion results, with a 50% to 85% improve-252

ment in the residual sum of squares (RSS) error on Archie’s law across all FM data sets.253

To quantitatively establish the preferred model for each data set, we use the Corrected254

Akaike Information Criterion (Hurvich & Tsai, 1989), as reviewed in Appendix B. All255

–11–



manuscript submitted to JGR: Solid Earth

Figure 3. Forward-modeled formation factor for the FM data using the power-law DEM

model (solid), Archie’s first law (dashed), the Humble equation (dot-dashed), and Focke and

Munn’s empirical relationships (dotted). Subfigures show a) Interparticle porosity; b) Moldic

porosity with 0 ≤ k < 0.1 mD; c) Moldic porosity with 0.1 ≤ k < 1 mD; and d) Moldic porosity

with 1 ≤ k < 100 mD.

–12–



manuscript submitted to JGR: Solid Earth

modeling log-relative likelihoods were much greater than 10, meaning there is compelling256

evidence supporting the use of the power-law model over Archie’s law on all electrical257

data sets.258

There is a theoretical possibility for certain model parameters that aspect ratio can259

be greater than unity, which would be inconsistent with the modeling assumption of oblate260

spheroids. As such, we show the range of porosities where the power-law model is valid261

in Table 1.262

The points of inflexion and turning points in the power-law forward-modeled for-263

mation factor trends are not present in Archie’s law but are key features in the empir-264

ical models of Focke and Munn (1987). We infer these special points are due to the com-265

peting effects of inclusion geometry and pore volume fraction on a porous rock’s over-266

all resistivity. A porous rock’s resistivity decreases with increasing porosity due to a re-267

duction in the amount of insulating material. The resistivity of a rock comprised of el-268

lipsoidal grains, however, increases with grain eccentricity, as shown by Mendelson and269

Cohen (1982). These two effects compete in the FM data, where inclusions become more270

eccentric with increasing porosity, leading to the non-monotonic formation factor trends271

observed by Focke and Munn (1987) and in Figure 3.272

5 Elastic Modeling273

We have seen how including a power-law between equivalent grain aspect ratio and274

porosity in an electrical DEM model can lead to effective modeling of rocks with com-275

plex pore geometries. Given this result, we now examine if a power-law between pore276

aspect ratio and porosity in an elastic DEM model is beneficial for the elastic modeling277

of rocks with complex pore geometries.278

5.1 Bulk Modulus Modeling279

To investigate the relationship between bulk modulus EPAR and porosity in elas-280

tic DEM modeling, we first calculated a measured effective bulk and shear modulus for281

each core of the three elastic data sets using the laboratory-measured P - and S-wave ve-282

locities, and bulk density. With known mineralogy and porosity from experimental data,283

and mineral moduli shown in Table 2, we inverted for each sample’s bulk modulus EPAR284

by minimizing the difference between measured and modeled bulk modulus using equa-285
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tions 5 and 6. As was done in the electrical case (Section 4), we then calculated initial286

model parameters {Γ0, ξ0} for each data set by fitting a line of best fit through the cross-287

plot of inverted EPARs and measured porosities on a log-log scale. Following this, we288

inverted equations 5, 6, and 8 for {Γ∗, ξ∗} 100 times using a fast simulated annealing al-289

gorithm, choosing the final solution parameters as those which led to the lowest misfit290

out of all 100 solutions, as was done in the electrical modeling case. Unlike the inver-291

sion for electrical model parameters, the minimized objective function in the inversion292

for bulk modulus {Γ∗, ξ∗} was the l2-distance between the measured and modeled bulk293

moduli for each data set.294

Figure 4 shows the inverted bulk modulus EPARs for each sample, as well as the295

line of best fit used to calculate {Γ0, ξ0} for each elastic data set, and the 95% confidence296

intervals associated with these fits. Parameters {Γ0, ξ0} and {Γ∗, ξ∗} are found in Ta-297

ble 3 for all elastic data sets, where we see only small updates in solution parameters be-298

tween the two inversions.299

We forward-modeled best-fitting φ−K trends using equations 5, 6, and 8 given300

the optimal parameters {Γ∗, ξ∗}. We also calculated the best fitting EPAR which is con-301

stant in porosity, α∗
DEM , for each data set and forward-modeled the corresponding Single-302

α DEM φ − K trends for comparison (Figure 5). Figures 5a and 5b show the power-303

law DEM model appears more accurate than Single-α DEM, particularly at low porosi-304

ties. In fact, the percentage decrease in elastic modeling RSS error by using the power-305

law DEM model over Single-α DEM model is seen in Table 3 to be over 60% in the Bakhorji306

data. Figure 5c is an example of the power-law model collapsing to a Single-α DEM model,307

with ξ∗ ≈ 0, and hence Γ∗ ≈ α∗
DEM (Table 3).308

Table 3 shows the log-relative likelihood (∆AICC) for all bulk modulus elastic mod-309

eling comparisons, which is greater than ten for the Bakhorji and Fournier data sets. Fol-310

lowing the model selection convention described in Appendix B, we conclude there is com-311

pelling evidence for the use of the power-law model in these cases. In modeling the Ver-312

wer data, when the power-law model approximates the special case of a Single-α DEM313

model, both models generate a similar φ−K trend (Figure 5c) but the Single-α DEM314

model has fewer parameters. The corresponding ∆AICC is -1.9, which supports the use315

of the Single-α model. We also show the range of porosities where the model is valid in316

Table 3, noting this is effectively all porosities on all elastic data sets.317
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Figure 4. Inverted EPARs (circles) from bulk modulus data. Lines of best fit (solid red) and

their 95% confidence intervals (dashed black) are shown. Subfigures show a) the Bakhorji data

set; b) the Fournier data set; and c) the Verwer data set.
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Figure 5. Forward-modeled bulk modulus from the power-law DEM (solid blue) and op-

timal Single-α DEM (dashed red) models, as well as measured data (circles), and the Hashin-

Shtrikman bounds (dotted black bounding curves). Subfigures show a) the Bakhorji data set;

b) the Fournier data set; and c) the Verwer data set. Notice the power-law and Single-α DEM

trends are almost identical in the Verwer data.
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5.2 Shear Modulus and Vp-Vs Modeling318

A shortcoming of elastic inclusion modeling is the practical inability to model both319

a rock’s bulk and shear modulus using the same EPAR. This is observed by Fournier et320

al. (2011, 2014, 2018), and is usually attributed to the presence of asperities in pores.321

In fact, Fournier et al. (2014, 2018) investigate the relationship between bulk and shear322

modulus EPARs and exploit this relationship to effectively characterize different litholo-323

gies. In this section, we first mathematically relate the bulk and shear modulus EPARs324

of a rock before deriving Vp-Vs and Vp/Vs-φ models based on elastic DEM theory and325

the proposed power-law relationship.326

We denote the rock’s porosity-dependent bulk and shear modulus EPARs by αK(φ)327

and αµ(φ) respectively. Similarly, {ΓK , ξK} and {Γµ, ξµ} are their respective power-law328

model parameters.329

We inverted for the shear modulus parameters {Γµ, ξµ} of the three elastic data330

sets by the same method as bulk modulus inversion but minimizing shear modulus mis-331

fit. Figure 6 shows the parameterized linear φ−α trends on a log-log plot after shear332

modulus inversion.333

Initial and final shear modulus parameters are displayed in Table 3 and are distin-334

guished by the subscript “0” and superscript “*” respectively.335

Figure 7 shows that forward-modeling φ − µ trends seems to generate more ac-336

curate fits over standard, Single-α DEM methods, in the Bakhorji and Fournier data sets.337

Comparing the proposed power-law model and the best-fitting Single-α DEM model in338

terms of log-relative likelihoods, there is compelling evidence that the power-law model339

is the best model for use on the Bakhorji and Fournier shear modulus data, with ∆AICC >340

10 (Table 3). It is approximately equally likely the power-law and Single-α DEM mod-341

els are the best model by the AICC metric for the Verwer data set as ∆AICC = 0.0.342

From equation 8, the ratio of αK(φ) and αµ(φ) is:343

αµ (φ) =
Γµ
ΓK

φξ̄αK (φ) ; (10)

where ξ̄ = ξµ − ξK .344
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Figure 6. Inverted EPARs (circles) from shear modulus data. Lines of best fit (solid red) and

their 95% confidence intervals (dashed black) are shown. Subfigures show a) the Bakhorji data

set; b) the Fournier data set; and c) the Verwer data set.
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Figure 7. Forward-modeled shear modulus from the power-law DEM (solid blue) and op-

timal Single-α DEM (dashed red) models, as well as measured data (circles), and the Hashin-

Shtrikman bounds (dotted black bounding curves). Subfigures show a) the Bakhorji data set;

b) the Fournier data set; and c) the Verwer data set. Notice the power-law and Single-α DEM

trends are almost identical in the Verwer data.

–22–



manuscript submitted to JGR: Solid Earth

In Table 3, we observe Γ∗
µ and Γ∗

K are similar for the Bakhorji and Fournier data345

sets, implying αK and αµ are similar in the high porosity limit. Given the observed sim-346

ilarity of Γ∗
µ and Γ∗

K in the Fournier and Bakhorji data sets, we modeled a calcite Vp/Vs-347

φ relationship using the approximation:348

αµ (φ) ≈ φξ̄αK (φ) . (11)

Thus we see parameter ξ̄ quantifies the difference in how bulk and shear modulus349

EPARs change with porosity.350

Figure 8 shows the inverted bulk and shear modulus EPARs for each calcitic core351

sample, taken from the Bakhorji and Fournier data sets, and the forward-modeled αµ-352

αK trend for calcites. We forward-modeled effective bulk and shear modulus trends us-353

ing the elastic DEM model (equations 5 and 6) and equation 11. Following this, we forward-354

modeled a Vp-Vs trend for dry calcitic rocks using densities from Table 2. Water-saturating355

the modeled dry Vp-Vs trend using Gassmann (1951) fluid substitution, we compare the356

model’s behavior with the empirical relations of Pickett (1963) and Castagna et al. (1993)357

in Figure 8 for wet calcite. The power-law DEM model evidently approximates the em-358

pirical models in the range of the data, while having the added benefits of being correct359

in the high and low porosity limits and being based on first principles.360

Figure 8 also shows the forward-modeled Vp/Vs-φ trend calculated for dry calcite361

using the Vp and Vs trends obtained through equation 11. The laboratory measured data362

are shown and generally agree with this analytically derived Vp/Vs-φ trend.363

6 Discussion364

We have presented a modified DEM model which fits 7 public-domain electrical and365

elastic data sets more accurately than the typical DEM modeling approach. This im-366

proved fitting, however, is at the expense of an extra model parameter, which we have367

justified using log-relative likelihood analysis. Model parameters ξ and Γ both have a368

physical interpretation. Parameter ξ signifies the rate at which EPAR or EGAR changes369

with porosity. It follows that ξ may be an indicator of how a rock is affected by the phys-370

ical processes which alter pore geometry such as diagenesis. Parameter Γ indicates the371
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c

b

a

Figure 8. Vp-Vs modeling of the combined Bakhorji and Fournier calcitic data sets. Diamond

markers denote 100% calcite, while squares denote 100% fluid. a) The αµ-αK trend (solid blue)

and inverted EPARs from dry laboratory measurements (circles) are shown with a dashed 1:1

line for reference. b) The Gassmann-wetted power-law DEM Vp-Vs trend (solid blue) is shown

with the Castagna et al. (1993) (dashed black) and Pickett (1963) (dotted black) empirical rela-

tions for wet calcite. c) The dry power-law DEM Vp/Vs-φ trend (solid blue) is shown with dry

laboratory measurements (circles).
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limiting EPAR or EGAR when φ → 1, and therefore indicates the expected stiffness372

of a rock at high porosities.373

We have selected data with highly-constrained mineralogy and fluid content to min-374

imize errors in EPAR or EGAR inversion. The fluid content and hence its electrical re-375

sistivity is largely unknown in the experiments of Focke and Munn (1987). However, Focke376

and Munn (1987) note that formation factor does not appear to be affected by the brine’s377

resistivity in clean carbonates. The extension of the work in this paper to multiminer-378

alic and multifluid rocks may have larger modeling errors as additional, mixing models379

must also be used. The proposed power-law electrical model is not designed to account380

for the double-layer effect (Waxman & Smits, 1968) as all solid phases are assumed to381

be insulating.382

Archie’s (Archie, 1942) contribution was to show that resistivity of fully saturated383

sandstones followed a simple law given by equation 1, but unfortunately it became clear384

that carbonates showed more complex relationships. Several authors tried to address this385

variability by allowing cementation factor to vary with porosity in Archie’s law, deduc-386

ing values that varied from 1 to greater than 4 (Focke & Munn, 1987; Verwer, Eberli,387

& Weger, 2011). Although undeniably useful, these porosity varying forms can be read388

as definitions of cementation factor; any combination of formation factor and porosity389

can be modeled with a suitable choice of the value m. Our goal in this paper was to link390

this implicit cementation factor-porosity relationship directly to details of the pore-structure,391

leading the way to making the formulation predictive.392

The presented power-law model has the same number of model parameters as the393

critical porosity model of Mukerji, Berryman, Mavko, and Berge (1995). This power-law394

model can act as an approximate critical porosity model when ξ < 0, as well as the Single-395

α DEM model when ξ = 0. The power-law model’s form when ξ > 0 cannot be ap-396

proximated by the typical critical porosity model, however, which may make the power-397

law model preferable in the case of an unknown critical porosity.398

The sign of parameter ξ∗ is positive in the elastic case, and negative in the elec-399

trical case. This is due to the elastic model being constructed with inclusions of fluid be-400

ing embedded into a background of matrix, while the electrical model is constructed with401

inclusions of grain material being embedded into a background of fluid.402
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A major drawback of modeling with the Humble equation is that it is non-physical403

in the high-porosity limit. The proposed electrical power-law DEM model addresses this404

issue. It models carbonate data with comparable accuracy to the Humble equation (Fig-405

ure 3) and uses the same number of model parameters, but is correct when φ→ 1, like406

Archie’s first law.407

Our claim of a non-constant relationship between porosity and EPAR may seem408

to contrast with that of Fournier et al. (2018), who conclude EPAR is constant in min-409

eralogy and porosity for carbonates with a given dominant pore type. Fournier et al. (2018),410

however, do observe a change in EPAR with porosity for a given carbonate facies (e.g.,411

in spherulites from offshore Brazil). Further, Fournier et al. (2018) show diagenetic al-412

teration in carbonates, such as vug-forming dissolution, leads to altered EPARs. Our find-413

ings may therefore be consistent with the foundational works of Fournier et al. (2011,414

2014, 2018) if our investigated samples are diagenetically altered or differ in dominant415

pore type across different porosities.416

7 Conclusion417

We argue that introducing a power-law relationship between porosity and aspect418

ratio improves the efficiency of modeling the variation of electrical properties with poros-419

ity, and also observe benefits when using this power-law relation in elastic modeling. Much420

interpretation of resistivity or velocity in terms of porosity depends on a small number421

of empirical relationships, which are known to break down in many important cases. Our422

power-law leads to alternative relationships which are derived from first principles, re-423

produce the empirical relations over much of the porosity range, and are exactly correct424

in the high and low porosity limits. This provides a basis for extrapolating the empir-425

ical relationship to different geological conditions, as well as an alternative in situations426

where the empirical models are known to fail, as is the case with Archie’s first law in many427

carbonates. Use of the power-law model to link electrical and elastic properties would428

require a data set with both measurements, but we hope the proposed models are a step429

towards multiphysics modeling from first principles.430

A Data review431

The resistivity data of Focke and Munn (1987) are laboratory resistivity measure-432

ments made on reservoirs core from offshore Qatar. No pore fluid conductivity or salin-433
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ity measurements were provided in the original publication of Focke and Munn (1987).434

Rather, it was noted that the experimental pore fluid simulated formation water for all435

data sets. Similarly, mineralogical measurements were not available, but it was noted that436

most plugs were made of clean carbonates. Having no tabulated data, we digitized the437

data manually.438

We studied only subsets of the Verwer (Verwer et al., 2008), Fournier (Fournier et439

al., 2011), and Bakhorji (Bakhorji, 2010) elastic data sets to minimize the influence of440

confounding factors on our modeling results. Table A.1, adapted from Kittridge (2014),441

shows data set details. We selected only dry measurements for elastic modeling made442

on approximately monomineralic samples.443

We studied the 51-sample subset from the Verwer data set which contained poros-444

ity, dry Vp, dry Vs, dry bulk density measurements, and had 100% dolomite composi-445

tion to the nearest integer by XRD analysis. We modeled this data assuming 100% dolomite446

mineralogy using the elastic parameters shown in Table 3. We used the dry core mea-447

surements of the Bakhorji data set at 20 MPa confining pressure from the loading stage448

of the loading-then-unloading experimental regime, as was done by Kittridge (2014). We449

studied the 24-sample subset from this Saudi-D reservoir data which contained at least450

90% calcite by volume. The median composition of these samples was 99% calcite, so451

we modeled the data set using a 100% calcite mineralogy with the elastic parameters shown452

in Table 3. We studied the dry, elastic measurements of the Fournier data set made at453

20 MPa confining pressure on all 80 calcitic cores and modeled this data set with a 100%454

calcite mineralogy.455

B Corrected Akaike Information Criterion456

The Akaike Information Criterion (AIC) (Akaike, 1973) is a model selection cri-457

terion based in Information theory which estimates the most likely amount of informa-458

tion lost when approximating measured data generated by a true, unknown model, with459

a candidate, fitted model. The AIC does this by estimating the fitted model’s expected460

Kullback-Leibler divergence (Kullback & Leibler, 1951) from the true, unknown model461

which generates the measured data. Hurvich and Tsai (1989) formulate the AIC as:462

AIC = n
(
log ŝ2 + 1

)
+ 2 (p+ 1) ; (B.1)
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where n is the number of samples, p is the number of model parameters, and ŝ is463

the maximum likelihood estimate of the measured data’s variance.464

The AIC is biased in the case of small n, where it tends to favor models with larger465

p (Hurvich & Tsai, 1989). As our data sets are relatively small, we compare models us-466

ing the Corrected Akaike Information Criterion (AICC) (Hurvich & Tsai, 1989), which467

is more accurate in small n. Hurvich and Tsai (1989) derive the AICC as:468

AICC = AIC +
2 (p+ 1) (p+ 2)

n− p− 2
. (B.2)

We see the second, additive term on the right-hand side of equation B.2 goes to469

0 when n � p, approximating the AIC, and is non-negligible when p and n are com-470

parable. The difference, ∆AICC , in the AICC values of a reference and candidate model471

indicates the evidence for using one model over the other. It is the logarithm of the rel-472

ative likelihood of the two models, conditional on the model parameters and residuals473

from the data (Burnham & Anderson, 2002). We thus refer to the ∆AICC as the log-474

relative likelihood throughout this paper.475

For example, we can compare the two-parameter, power-law (superscript “PL”) model476

with the best single-parameter (superscript “DEM”) model using the ∆AICC , which we477

define as:478

∆AICC = AICDEM
C −AICPL

C . (B.3)

The value of ∆AICC here indicates the evidence that the proposed power-law model479

is more likely to be more efficient than the single-aspect ratio (“Single-α”) DEM model.480

Burnham and Anderson (2002, 2004) provide useful rules of thumb for the interpreting481

the log-relative likelihood of competing models, analogous to the popular advice of Raftery482

(1996) or Jeffreys (1998) in the Bayesian model selection literature. Applied specifically483

to our formulation of ∆AICC , these guidelines suggest if ∆AICC > 0, the power-law484

model is considered to be the best model, however if:485

1. 0 < ∆AICC < 2 : Single-α DEM has substantial evidence as best model.486

2. 4 < ∆AICC < 7 : Single-α DEM has considerably less evidence.487

3. ∆AICC > 10 : Single-α DEM has essentially no evidence.488
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We reframe these guidelines to focus on the power-law model, proposing and dis-489

cussing results in terms of the complimentary case:490

4. ∆AICC > 10 : Power-law model has compelling evidence as best model.491

When ∆AICC < 0, Single-α DEM is accepted as the best model and the mag-492

nitude of the log-relative likelihood is used to measure the evidence that the power-law493

model is the best model under Burnham and Anderson’s guidelines.494
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