6,953 research outputs found

    Generation of a composite grid for turbine flows and consideration of a numerical scheme

    Get PDF
    A composite grid was generated for flows in turbines. It consisted of the C-grid (or O-grid) in the immediate vicinity of the blade and the H-grid in the middle of the blade passage between the C-grids and in the upstream region. This new composite grid provides better smoothness, resolution, and orthogonality than any single grid for a typical turbine blade with a large camber and rounded leading and trailing edges. The C-H (or O-H) composite grid has an unusual grid point that is connected to more than four neighboring nodes in two dimensions (more than six neighboring nodes in three dimensions). A finite-volume lower-upper (LU) implicit scheme to be used on this grid poses no problem and requires no special treatment because each interior cell of this composite grid has only four neighboring cells in two dimensions (six cells in three dimensions). The LU implicit scheme was demonstrated to be efficient and robust for external flows in a broad flow regime and can be easily applied to internal flows and extended from two to three dimensions

    Improperly obtained evidence in the Commonwealth: lessons for England and Wales?

    Get PDF
    English law's traditional approach to the admissibility of improperly obtained evidence is currently being rethought in response to a range of domestic and international pressures. With the position in England and Wales following the House of Lords' decision in A and Others (2005) firmly in mind, this article undertakes a selective review of comparative approaches to the admissibility of improperly obtained evidence in Australia, Canada and New Zealand. Having analysed relevant legislation and case law in each jurisdiction, general principles are derived to guide future developments in English law, in conformity with the European Convention on Human Rights

    Optical switch using frequency-based addressing in a microelectromechanical systems array

    Get PDF
    Embodiments of the present invention provide structures for microelectromechanical systems (MEMS) that can be sensed, activated, controlled or otherwise addressed or made to respond by the application of forcing functions. In particular, an optical shutter structure suitable for use in an optical switch arrangement is disclosed. In one embodiment, an optical shutter or switch can be scaled and/or arranged to form arbitrary switch, multiplexer and/or demultiplexer configurations. In another embodiment of the present invention, an optical switch can include: a shutter; and a flexure coupled to the shutter, whereupon a vibration transmitted to the flexure when in the presence of a resonant frequency causes the shutter to move across an opening for the passage of an optical signal

    Dynamics of axial separation in long rotating drums

    Full text link
    We propose a continuum description for the axial separation of granular materials in a long rotating drum. The model, operating with two local variables, concentration difference and the dynamic angle of repose, describes both initial transient traveling wave dynamics and long-term segregation of the binary mixture. Segregation proceeds through ultra-slow logarithmic coarsening.Comment: 4 pages, 3 Postscript figures; submitted to PR

    Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus.

    Get PDF
    Pheromones and other semiochemicals play a crucial role in today's integrated pest and vector management strategies. These semiochemicals are typically discovered by bioassay-guided approaches. Here, we applied a reverse chemical ecology approach; that is, we used olfactory proteins to lead us to putative semiochemicals. Specifically, we used 7 of the top 10 odorant receptors (ORs) most expressed in the antennae of the southern house mosquito, Culex quinquefasciatus, and which are yet to be deorphanized. We expressed these receptors in the Xenopus oocyte recording system and challenged them with a panel of 230 odorants, including physiologically and behaviorally active compounds. Six of the ORs were silent either because they are not functional or a key odorant was missing. CquiOR36, which showed the highest transcript levels of all OR genes in female antennae, was also silent to all odorants in the tested panel, but yielded robust responses when it was accidentally challenged with an old sample of nonanal in ethanol. After confirming that fresh samples were inactive and through a careful investigation of all possible "contaminants" in the old nonanal samples, we identified the active ligand as acetaldehyde. That acetaldehyde is activating CquiOR36 was further confirmed by electroantennogram recordings from antennae of fruit flies engineered to carry CquiOR36. Antennae of female mosquitoes also responded to acetaldehyde. Cage oviposition and dual-choice assays demonstrated that acetaldehyde is an oviposition attractant in a wide range of concentrations and thus of potential practical applications

    Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces

    Get PDF
    Using a combination of first-principles theory and experiments, we provide a quantitative explanation for chemical contributions to surface-enhanced Raman spectroscopy for a well-studied organic molecule, benzene thiol, chemisorbed on planar Au(111) surfaces. With density functional theory calculations of the static Raman tensor, we demonstrate and quantify a strong mode-dependent modification of benzene thiol Raman spectra by Au substrates. Raman active modes with the largest enhancements result from stronger contributions from Au to their electron-vibron coupling, as quantified through a deformation potential, a well-defined property of each vibrational mode. A straightforward and general analysis is introduced that allows extraction of chemical enhancement from experiments for specific vibrational modes; measured values are in excellent agreement with our calculations.Comment: 5 pages, 4 figures and Supplementary material included as ancillary fil

    Optical properties of microlenses fabricated using hydrophobic effects and polymer-jet-printing technology

    Get PDF
    We describe high-precision microlenses with excellent optical characteristics. The lenses are formed precisely at desired locations on a wafer using a polymer-jet system in which hydrophobic effects define the lens diameter and surface tension creates a high-quality optical surface. To make the lenses, we defined hydrophilic circular regions at desired locations using photolithography to pattern a 0.2-pm thick Teflon (hydrophobic) layer on a quartz substrate, as shown in Figures 1 and 2. Then, using a polymer-microjet printing system (Figure 3), we dispense an exact amount of UV-curable polymer within hydrophilic circles to obtain microlenses having desired optical properties [ 13. Figure 4 shows that adjusting the volume of the UV-curable optical epoxy within a hydrophilic circle of a given diameter changes the curvature of the microlens. The step resolution of the microlens volume is determined by the average droplet size (~25pL) of the polymer-jet print head. This hybrid method enables us to define the locations and diameters of microlenses with a ±1 μm precision as well as to control the curvatures of the microlenses accurately

    Climate change, water and agriculture in the Greater Mekong subregion

    Get PDF
    Climate change / Adaptation / Indicators / Water resource management / River basins / Water availability / Water quality / Groundwater / Fisheries / Ecosystems / Water power / Population growth / Land use / Biofuels / Sea level / South East Asia / Cambodia / Laos / Myanmar / Thailand / Vietnam / China / Greater Mekong Subregion / Yunnan Province

    Microfabricated torsional actuator using self-aligned plastic deformation

    Get PDF
    We describe microfabricated torsional actuators that are made using self-aligned plastic deformation in a batch process. The microactuators are formed in single-crystal silicon and driven by vertical comb-drives. Structures have been built that resonate at frequencies between 1.90 and 5.33 kHz achieving scanning angles up to 19.2 degrees with driving voltages of 40 V_(dc) plus 13 V_(ac). After continuous testing of 5 billion cycles at the maximum scanning angle, there appears to be no observable degradation or fatigue of the plastically deformed silicon tors ion bars. We present measured results obtained with MEMS scanning mirrors; the actuators may be useful for many other MEMS applications
    corecore