7,510 research outputs found
Structured Optical Materials Controlled by Light
Materials of which the optical response is determined by their structure are
of much interest both for their fundamental properties and applications.
Examples range from simple gratings to photonic crystals. Obtaining control
over the optical properties is of crucial importance in this context, and it is
often attempted by electro-optical effect or by using magnetic fields. In this
paper, we introduce the use of light to switch and tune the optical response of
a structured material, exploiting a physical deformation induced by light
itself. In this new strategy, light drives an elastic reshaping, which leads to
different spectral properties and hence to a change in the optical response.
This is made possible by the use of liquid crystalline networks structured by
Direct Laser Writing. As a proof of concept, a grating structure with
sub-millisecond time-response is demonstrated for optical beam steering
exploiting an optically induced reversible shape-change. Experimental
observations are combined with finite-element modeling to understand the
actuation process dynamics and to obtain information on how to tune the time
and the power response of this technology. This optical beam steerer serves as
an example for achieving full optical control of light in broad range of
structured optical materials
Adding rotation to translation: percepts and illusions
This study investigated how the perception of a translating object is affected by rotation. Observers were asked to judge the motion and trajectory of objects that rotated around their centroid while linearly translating. The expected percept, consistent with the actual dynamics used to generate the movie sequences, is that of a translating and rotating object, akin to a tumbling rugby ball. Observers, however, do not always report this and, under certain circumstances, perceive the object to translate on an illusory curved trajectory, similar to a car driving on a curved road. The prevalence of veridical versus nonveridical percepts depends on a number of factors. First, if the object's orientation remains within a limited range relative to the axis of translation, the illusory, curved percept dominates. If the orientation, at any point of the movie sequence, differs sufficiently from the axis of translation, the percept switches to linear translation with rotation. The angle at which the switch occurs is dependent upon a number of factors that relate to an object's elongation and, with it, the prominence of its orientation. For an ellipse with an aspect ratio of 3, the switch occurs at approximately 45°. Higher aspect ratios increase the range; lower ratios decrease it. This applies similarly to rectangular shapes. A line is more likely to be perceived on a curved trajectory than an elongated rectangle, which, in turn, is more likely seen on a curved path than a square. This is largely independent of rotational and translational speeds. Measuring perceived directions of motion at different instants in time allows the shape of the perceived illusory curved path to be extrapolated. This results in a trajectory that is independent of object size and corresponds closely to the actual object orientation at different points during the movie sequence. The results provide evidence for a perceptual transition from an illusory curved trajectory to a veridical linear trajectory (with rotation) for the same object. Both are consistent with special real-world cases such as objects rotating around a centre outside of the object so that their orientation remains tangent to the trajectory (cheetahs running along a curve, sailboats) or objects tumbling along simple trajectories (a monkey spinning in air, spinning cars on ice). In certain cases, the former is an illusion. </jats:p
A comparative assessment of different deviation strategies for dangerous NEO
In this paper a number of deviation strategies for dangerous Near Earth Objects (NEO) have been compared. For each strategy (i.e. Solar Collector, Nuclear Blast, Kinetic Impactor, Low-thrust Propulsion, Mass Driver) a multi criteria optimisation method has been used to reconstruct the set of Pareto optimal solutions minimising the mass of the spacecraft and the warning time, and maximising the deviation. Then, a dominance criterion has been defined and used to compare all the Pareto sets. The achievable deviation at the MOID, either for a low-thrust or for an impulsive variation of the orbit of the NEO, has been computed through a set of analytical formulas. The variation of the orbit of the NEO has been estimated through a deviation action model that takes into account the wet mass of the spacecraft at the Earth. Finally the technology readiness level of each strategy has been used to compute a more realistic value for the required warning time
Dark MaGICC: the effect of Dark Energy on galaxy formation. Cosmology does matter
We present the Dark MaGICC project, which aims to investigate the effect of
Dark Energy (DE) modeling on galaxy formation via hydrodynamical cosmological
simulations. Dark MaGICC includes four dynamical Dark Energy scenarios with
time varying equations of state, one with a self-interacting Ratra-Peebles
model. In each scenario we simulate three galaxies with high resolution using
smoothed particle hydrodynamics (SPH). The baryonic physics model is the same
used in the Making Galaxies in a Cosmological Context (MaGICC) project, and we
varied only the background cosmology. We find that the Dark Energy
parameterization has a surprisingly important impact on galaxy evolution and on
structural properties of galaxies at z=0, in striking contrast with predictions
from pure Nbody simulations. The different background evolutions can (depending
on the behavior of the DE equation of state) either enhance or quench star
formation with respect to a LCDM model, at a level similar to the variation of
the stellar feedback parameterization, with strong effects on the final galaxy
rotation curves. While overall stellar feedback is still the driving force in
shaping galaxies, we show that the effect of the Dark Energy parameterization
plays a larger role than previously thought, especially at lower redshifts. For
this reason, the influence of Dark Energy parametrization on galaxy formation
must be taken into account, especially in the era of precision cosmology.Comment: 11 pages, 13 figure
Evolution of Fragmentation Cloud in Highly Eccentric Orbit Using Representative Objects
Many historical on-orbit satellite fragmentations occurred in Highly Eccentric Orbits (HEOs) such as the Geostationary Transfer Orbit (GTO). Such fragmentations produce fragment clouds that interfere with the Low Earth Orbit (LEO) environment and pose a threat to operational satellites. Objects in HEO undergo complex dynamics due to the influence of perturbations varying as a function mainly of their altitude and area-to-mass ratio. The evolution of such a cloud, including small objects down to 1 mm, is not well understood. This paper describes a method to model the evolution of a fragmentation cloud in HEO under the influence of atmospheric drag and Earth's oblateness. Semi-analytical techniques are applied to propagate represen- tative objects constituting the cloud; rather than following the evolution of many distinct fragments. The proposed method is applied on a GTO upper stage using the standard NASA break-up model to nd the distribution right after the fragmentation. The evolution of the fragment cloud is analysed statistically and time of closures are calculated for the formation of the torus along the parent orbit and the band around Earth. Assumptions on the evolution of the cloud that are valid in LEO are shown to be invalid for clouds in HEO
Recommended from our members
Children's Understanding Of The Relationship Between Addition and Subtraction
In learning mathematics, children must master fundamental logical relationships, including the inverse relationship between addition and subtraction. At the start of elementary school, children lack generalized understanding of this relationship in the context of exact arithmetic problems: they fail to judge, for example, that 12 + 9 − 9 yields 12. Here, we investigate whether preschool children’s approximate number knowledge nevertheless supports understanding of this relationship. Five-year-old children were more accurate on approximate large-number arithmetic problems that involved an inverse transformation than those that did not, when problems were presented in either non-symbolic or symbolic form. In contrast they showed no advantage for problems involving an inverse transformation when exact arithmetic was involved. Prior to formal schooling, children therefore show generalized understanding of at least one logical principle of arithmetic. The teaching of mathematics may be enhanced by building on this understanding.Psycholog
Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift
Dust attenuation affects nearly all observational aspects of galaxy
evolution, yet very little is known about the form of the dust-attenuation law
in the distant Universe. Here, we model the spectral energy distributions
(SEDs) of galaxies at z = 1.5--3 from CANDELS with rest-frame UV to near-IR
imaging under different assumptions about the dust law, and compare the amount
of inferred attenuated light with the observed infrared (IR) luminosities. Some
individual galaxies show strong Bayesian evidence in preference of one dust law
over another, and this preference agrees with their observed location on the
plane of infrared excess (IRX, ) and UV slope
(). We generalize the shape of the dust law with an empirical model,
where
is the dust law of Calzetti et al. (2000), and show that there
exists a correlation between the color excess and tilt with
+ . Galaxies with high
color excess have a shallower, starburst-like law, and those with low color
excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample
show no correlation between the shape of the dust law and stellar mass,
star-formation rate, or . The change in the dust law with color excess
is consistent with a model where attenuation is caused by by scattering, a
mixed star-dust geometry, and/or trends with stellar population age,
metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows
potential to constrain the dust law at even higher () redshifts.Comment: 20 pages, 18 figures, resubmitted to Ap
- …
