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ABSTRACT 

In this paper a number of deviation strategies for dangerous Near Earth Objects (NEO) have been compared. For 
each strategy (i.e. Solar Collector, Nuclear Blast, Kinetic Impactor, Low-thrust Propulsion, Mass Driver) a multi-
criteria optimisation method has been used to reconstruct the set of Pareto optimal solutions minimising the mass of 
the spacecraft and the warning time, and maximising the deviation. Then, a dominance criterion has been defined 
and used to compare all the Pareto sets. The achievable deviation at the MOID, either for a low-thrust or for an 
impulsive variation of the orbit of the NEO, has been computed through a set of analytical formulas. The variation 
of the orbit of the NEO has been estimated through a deviation action model that takes into account the wet mass of 
the spacecraft at the Earth. Finally the technology readiness level of each strategy has been used to compute a more 
realistic value for the required warning time. 

 

1. INTRODUCTION 

Among the vast amount of small celestial bodies 
that orbits the Sun, Near Earth Objects (NEO) are 
those asteroids whose orbits allow them to get into 
Earth’s neighbourhood. Apart from scientific reasons, 
such as the extensive amount of knowledge about 
formation, composition and evolution of the solar 
system, NEO represent a possible risk to mankind, 
even if not in a near term. 

On average, every 26-30 million years a 10-km-
sized asteroid strikes the Earth, while every 100 years 
a Tunguska class (100 m in size) asteroid hits. Each of 
these impacts permanently alters the characteristics of 
our planet to varying degrees. These events, and risks 
associated to our fragile ecosystem, have made the 
space community turn their attention to NEO [1]. 
Moreover advances in orbit determination of asteroids 
and theoretical studies on hazard characterization have 
increased the capability of predicting potential 
impacts. 

 Don Quijote [2], Deep Impact [3], NEAR [4] and 
ROSETTA [5], all of them space missions to asteroids 
or comets, evidence the interest of the scientific 
community, both in order to improve the current 
knowledge about the solar system and to test the 
capability to mitigate a dangerous asteroid if needed. 

During these last few decades many deviation 
methods involving numerous physical interactions 
with the asteroid have been analysed. These strategies 
can be organized in four main groups: kinetic 
impactors, i.e. methods modelled as inelastic impacts 
[6][7]; attached propulsion devices [8] (e.g. 
electric/chemical engines, solar sails); induced thermo-
optical changes on the asteroid surface [9] (e.g. 
induced Yarkovsky effect, paints) and ablation 
methods [10] (e.g. lasers, solar mirrors). More 
recently, other advanced concepts have been 
considered such as gravitational tractors [11] and 
technologies that act on the magnetic field or the 
rotational properties of the asteroid. 

 Only a few authors have performed a partial 
comparative assessment of the numerous proposed 
mitigation strategies. Some of these emphasise a 

mailto:m.ceriotti@aero.gla.ac.uk
mailto:m.ceriotti@aero.gla.ac.uk
mailto:m.ceriotti@aero.gla.ac.uk
mailto:g.radice@aero.gla.ac.uk


classification system based on NEO/spacecraft 
coupling [12], other systems are based on technology 
readiness and a third category on time to impact and/or 
intervention of the asteroid [13]. 

This paper presents a more exhaustive comparison 
of deflection methods according to different criteria. 
After a taxonomical classification of NEO physical 
characteristics (i.e. size, mass, shape and spin 
properties), composition (i.e. surface composition and 
heterogeneity, gas and dust emission) and orbital 
parameters (including inclination and eccentricity), the 
principal mitigation strategies have been evaluated in 
terms of several figures of merit: achieved miss 
distance at the Earth, anticipating time, total mass into 
orbit and technology readiness (estimated time to 
develop the required technology).  

The miss distance between the asteroid and the 
Earth is the displacement of the position of an asteroid 
at the Minimum Orbit Interception Distance (MOID) 
achieved by a deviation manoeuvre applied before the 
encounter, while the anticipating time has been defined 
as the time difference between the impact epoch and 
the time a given strategy is applied. 

Finally the paper presents a multi-criteria 
optimisation which provides a relative measure of the 
effectiveness of the different mitigation approaches. 

2. DEVIATION FORMULAS 

In order to study the effect of a general deflection 
strategy, we propose a set of analytical formulas that 
gives the variation of the MOID as a function of a 
variation of the orbit of the asteroid. This formulation 
is a generalization of what proposed by Carusi et al. 
[16], Scheeres et al. [17] and Izzo et al. [14][15], and 
yields results comparable with the results obtained by 
Conway [18] and Ross et al. [19]. 

Previous deflection formulas [14][15] where based 
on the modification of the orbital period due to a force 
acting on the asteroid. Only the effect on the orbital 
mean motion due to a change in the orbital energy was 
considered and other changes in the orbital geometry 
were neglected. As a consequence the resulting 
deviation could be maximised only by applying some 
action in a direction parallel to the velocity vector of 
the asteroid. Any other strategy producing an action in 
any normal direction could not be studied. 

A more general approach was used by Conway to 
determine the near-optimal direction in which an 
impulsive manoeuvre should be given. In this case, the 
modified orbit of the asteroid was propagated 
analytically forward in time by means of Lagrange 
coefficients expressed through universal formulas. A 
similar approach was used by Park and Ross [19], 
who; in a subsequent work [20] studied also the 

influence of the gravitational effects of the Earth. 
Finally Carusi et al. presented the first n-body analysis, 
by means of a numerical procedure, but restricted the 
deflection manoeuvre to be applied along-track only. 

In this work, the miss distance achieved with a 
given deviation action has been computed by means of 
proximal motion equations [21] expressed as a 
function of the orbital elements. The variation of the 
orbital parameters has been computed with Gauss’ 
equations [22]. Proximal motion equations, already 
available in the literature for formation flying on 
general elliptical orbits, provide, with very little 
modifications, a simple and general mean to compute, 
with a good accuracy, the variation of the MOID. An 
analytical expression was derived in the case the 
spacecraft-asteroid interaction can be modelled as an 
impulsive manoeuvre. 

Furthermore, the proposed analytical formulation 
can be used to compute the optimal direction of the 
deviating impulse and therefore the required δ v  to be 
imparted to the NEO for a given required variation of 
the MOID. 

When the deviation action is modelled as a low-
thrust action, instead, Gauss’ equations can be 
numerically integrated to compute the variation of the 
orbital elements. The developed model has general 
validity and can be applied to every deviation strategy 
unless the deviated orbit is too distant from the 
original one. 

Given the time of interception  of a generic 
NEO, the objective is to calculate the deviation 
achieved at the Minimum Orbit Interception Distance 
from the Earth, by applying a deviation action. The 
effect on the asteroid of all the analysed deviation 
strategies has been modelled either as an impulsive 

dt

δ v  at the interception time  or as a continuous 
acceleration over an interval [

dt

]d et t . These two cases 
have been described by different models, based on the 
same approach in order to compute the resulting 
change in MOID. 

Impulsive action deviation formulas 

The impulsive manoeuvre δ v  at time  acts as a 
perturbation on the orbit of the NEO. The new orbit of 
the NEO can be considered to be proximal to the 
unperturbed one. If 

dt

θ  is the true anomaly of the NEO 
at the MOID along the unperturbed orbit and 

*θ θ ω= +  is the corresponding latitude, we can write 
the variation of the position of the NEO, after 
deviation, with respect to its unperturbed position by 
using proximal motion equations [21]: 
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where δ rs , θδ s , δ hs  are the displacements in the 
radial, transversal and perpendicular-to-the-orbit-plane 
directions respectively, so that 

[ ]ϑδ δ δ δ= T
r hs s sr  and 21η = − e . The symbol 

δ  is used to define the relative orbit in terms of 
difference between the nominal orbit and the perturbed 
one. The variation of the orbital parameters a, e, i, ω  
and  are computed through Gauss’ planetary 
equations 

Ω
[22] considering an instantaneous change in 

the NEO velocity vector : [ ]δ δ δ δ= T
t n hv v vv
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The Gauss’ equations have been written in a 
tangential-normal-binormal reference frame, so that 
δ tv  and δ nv  are the components of the impulsive 
deviation manoeuvre, in the plane of the osculation 
orbit, along the velocity vector and perpendicular to it. 
The variation 

dt
Mδ  takes into account only the 

instantaneous change of the orbit geometry at time . 
On the other hand due to the change in the semi-major 
axis, there is a variation of the mean motion n with the 
associated variation in the mean anomaly: 

dt

 ( )δ δ δ= − =n MOID d

where MOIDt  is the time at the MOID along the 

orbit of the NEO and 
( )3 3

μ μδ
δ

= −
+

n
a a a

. Eq. 

(2.3) takes into account the phase shifting between the 
Earth and the NEO. The total variation in the mean 
anomaly between the unperturbed and the proximal 
orbit is therefore: 
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The result in Eq. (2.4) can be demonstrated as 
follows. Let’s define � MOIDM  as the mean anomaly of 
the perturbed orbit at the MOID and MOIDM  the mean 
anomaly of the nominal orbit at the MOID: 
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then 
 ( )δ δ= − = − +�

dMOID MOID MOID d tM M M n t t M  
Notice equations (2.1) are an approximation of the 

first order and thus they can be used until the relative 
orbit radius δr  is small compared to the nominal orbit 
radius r . 

The accuracy of Eqs. (2.1) has been assessed by 
numerically propagating forward in time the deviated 
orbit of the asteroid and comparing the obtained 
variation in the position vector with the one predicted 
by Eqs. (2.1). The nominal trajectory has been 
propagated from the deviation point up to the MOID, 
in the interval [ ]d MOIDt t  and the deviated one has 
been integrated starting from the deviation point on the 
NEO orbit with the modified velocity vector δ+v v . 
As a measure of accuracy we used the relative error 
between the variation in position computed 
numerically and analytically: 

 
δ δ

δ

−
= propagated estimated

r
propagated

e
r r

r
 (2.6) 

Figure 2.1 and Figure 2.2 show the relative errors 
as a function of the anticipating time −MOID dt

ΔM n t t n t  (2.3) 

t  and 
δ tv  along track (i.e. along the instantaneous velocity 
vector of the NEO). The relative error has been 
calculated for the asteroid 2000SG344 and for the 
asteroid 1979XB. These two different kinds of asteroid 
orbits, the former with 0.1<e  and , the latter 
with  and , have been chosen in order to 
study the influence of the orbital parameters on the 
accuracy of the deflection formulas. 
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Figure 2.1: Relative error for 2000SG344 deviation. 

 

 
Figure 2.2: Relative error for 1979XB deviation. 

 
Now if [ θΔ = Δ Δ Δ T

r ]hs s sr  is the vector 
distance of the asteroid from the Earth at the MOID, 
and [ θδ δ δ δ= T

r ]hs s sr  is the variation given by 
Eqs. (2.1), then the objective function for the 
maximum deviation problem is the following: 
 ( ) ( ) (2 2

θ θδ δ= Δ + + Δ + + Δ +r r h h )
2δJ s s s s s s (2.7) 

Notice that the objective function in Eq. (2.7) 
requires intrinsically to produce a variation that 
increases the MOID. 

A maximum deviation analysis has been carried 
out to find the optimal direction of an impulsive 
manoeuvre to be given to the asteroid at a specific time 
in order to achieve the maximum deviation at the 
MOID. 

Low-thrust action deviation formulas 

When a continuous deviation action is applied, the 
total variation in orbital parameters has been computed 

by integrating Gauss’ variational equations on the 
interval [ ]d et t : 
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where  is the acceleration function 
of time, given by the low-thrust strategy. Note than in 
this case the derivative of M, in the 6th equation of 
system 

[= T
t n ha a aa

(2.8), takes into account also the change of 
mean anomaly due to the change in the angular 
velocity n on the thrusting arc, because the term n can 
not be ignored as in the impulsive manoeuvre case. 
Called  the vector of 
the orbital parameters, we define: 

( ) [ ]ωα = Ω Tt a e i M

  ( ) ( ) [ ]Td et t a e i MωΔ = − = Δ Δ Δ ΔΩ Δ Δa a a
the finite variation of the orbital parameters on the 
NEO perturbed orbit, in the interval [ ]d et t , obtained 
form the numerical integration of Eqs.(2.8). 

We can note that δ = Δa a , δ = Δe e , δ = Δi i , 
δΩ = ΔΩ , δω ω= Δ , to be substitute in the proximal 
motion equations, while δM  has to be computed in a 
way analogous to (2.4). Since: 
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we can conclude that: 
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Where n is the nominal angular velocity and 
en n n− = Δ . At this point Eqs. (2.1) can be used again 

to compute the consequent δr . 



3. ACTION MODELS 

In order to evaluate the performance achievable 
with each deviation strategy, a set of simple models 
has been developed. Each model yields the total 
impulse imparted to the asteroid and the total required 
spacecraft mass. The general analytical form of all the 
models is: 

  
( )

( )
,

,
d NEO

d NEO

f m Id

Thrust f m Id

Δ =

=

v

where  is dry mass of the spacecraft, which is 
defined as the mass available to alter the trajectory of 
the celestial body after the transfer from Earth to the 
asteroid, and Id

dm

NEO is the asteroid identification 
number. 

 Solar Collector 

The so-called solar collector is supposed to be an 
inflatable mirror that focuses enough energy onto the 
surface to ablate it. The material evaporated produces 
a plume of gas, which provides a constant thrust. 

Model Overview 

 
Figure 3.1: Model Outline. Sun reflexed in a mirror is 
focused into the asteroid equator. 

 
A beam spot (see Figure 3.1), with enough energy 

density to trigger the evaporation, is focused onto the 
surface of the asteroid. The time a portion of the 
surface spends in the spot beam is a function of the 
angular rotation of the asteroid and of the size of the 
spot. A key parameter, defining the efficiency of the 
system, is the so-called focusing capability, which is 
defined as the ratio between the aperture area of the 
mirror and the area of the illuminated spot on the 
surface. 

The model assumes the system to be an infinite 
long rod, with the illuminated spot in one side of it. 
The illuminated surface is at a temperature of 1800 K, 
which is the sublimation temperature of the forsterite 
[23]. It is easy to proof that the conduction loss trough 

the perimeter of this rod is much smaller than the 
energy loss because of the movement of the surface 
(asteroid rotation and fixed beam), for this reason it is 
believed that the infinite long rod is a good 
approximation to the system [24]. 

Sublimation is due to the total absorbed energy. 
The net absorbed energy is the total energy focused on 
the surface minus the radiation and conduction losses. 
The radiation loss is easily calculated through the 
blackbody radiation formula ( ), 
while energy loss by conduction can be computed by 
solving the following differential equation: 

4σ ε= ⋅ ⋅�
radiationE T
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which will provide us the temperature profile (T) 
depending of the variables x and time t. Eq. (3.1) is 
solved with the following initial and boundary 
conditions: 
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We solved Eq. (3.1), using Laplace transformation 
and the expression derived is: 
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ρ

=
k
c

. 

Finally, to calculate the conduction, the derivative 
of the temperature profile is calculated through a series 
expansion of the complementary error function 
(erfc(x)), at that time the energy conduction in the 
surface (x=0) function of time develops the following 
form: 

1522
π
ρ

=
⋅

⋅ ⋅

�
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t
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Where r is density, c is heat capacity (750 j/kg/k) 
and K is thermal conductivity. 

Mass expelled integral 

In order to know the acceleration produced by the 
mass expelled, we need to know the mass evaporation 
flow and mean velocity of the gas. The overall system 
energy balance will help with the evaporation flow. 

− = ⋅in out
dmE E H
dt

 

Where −in outE E  is the energy power available for 

evaporation, H is the energy of sublimation and dm
dt  



is the mass per second that is being evaporated or 
sublimated. 

Writing this equation with all its terms and 
isolating the derivative of the mass and time it is 
obtained: 
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Where ρ power  is the energy density incoming into 
the system, taking into account efficiency of the mirror 
and albedo of the asteroid. 

In order to calculate the total mass sublimated we 
perform an integral of the surface under the 
illuminated spot, taking into account the relation 
between the x coordinate and time of exposition. We 
must pay attention to the negative results of dm dt , as 
this means simply that the evaporation is not taking 
place. Consequently the limits of the integration must 
be fixed in order of avoiding negative results. Finally, 
the integral to solve is: 

max

min

( )
fin

in

x Y

x Y

dm dmtotal t dx dy
dt dt

= ⋅∫ ∫ ⋅  (3.2) 

The change of variables = ⋅rotx V t , so = ⋅rotdx V dt  
has been performed, since the coordinate x and the 
time of exposition are related through the surface 
velocity. As a result the integral has the following final 
shape:  
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 Final Thrust  

Once the evaporation flux is computed, the average 
velocity of the particles is determined using the 
Maxwell distribution for particles of an ideal gas. 

8
π

=
KTV
M

 

where K is the Boltzman constant, T is the 
sublimation temperature (1800 K from Wang et. al. 
[23]) and M is the mass of a single molecule of 
Mg2SiO4. At that time the thrust can be calculated 

multiplying the mass flux, the average velocity and a 
scattering factor (2/p). 

2 dmThrust total V
dtπ

= ⋅ ⋅  

This acceleration is supposed to be tangent to the 
trajectory. Afterwards this thrust will be introduced in 
Gauss’ equations (2.8), along with the equations of 
asteroid mass consumption (3.2) on the surface due to 
sublimation, to obtain the total variation in orbital 
parameters over the interval [ ]d et t . 

Spacecraft Sizing 

. The mass of the spacecraft is estimated from the 
aperture of the mirror by using a simple correlation 
formula [25]:  

[ ] [ ]( )2/3
m 2.155 dD m k≈ g  

We use this correlation formula to estimate the 
mass of the mirror which represents the payload of the 
mission. The payload mass is then assumed to account 
for the 50% of the total mass of the spacecraft. 

Electric Propulsion 

In this case the linear momentum of the asteroid is 
perturbed by a thrust given by a propulsion system 
attached to its surface.  

Spacecraft Sizing 

The system could consist of at least two engines 
situated in opposite spots along the equator of the 
asteroid. By scheduling properly the periods when the 
engines are switch on and off we can obtain a constant 
thrust and a limited scattering factor. The scattering 
factor takes into account the misalignment from the 
optimal thrusting direction. Assuming that the power 
available comes from a subsystem the weight of which 
is 50% of the dry mass and that the power obtainable 
is about 20 W/kg [26], the thrust can be calculated 
using an averaged thrust/power ratio of the most 
common Ion thrusters [26], 34 mN/kW. This 
hypothesis leads to the following relation: 

[ ] [ ]10.5 0.034 /
2 0.02 /

d
Scattering

mThrust s N kW
kW kg

= ⋅ ⋅ ⋅ ⋅

Finally, the mass consumption or mass propellant is 
calculated by using the rocket equation with an spI  of 
3080 s. 



Mass Driver 

The idea behind this strategy is to change the linear 
momentum of the asteroid by using some ejected 
asteroid material. This ejected material would be 
accelerated by a catapult or a gun system, able to 
convert the available spacecraft power into kinetic 
energy. 

 21
2 eKE m v= ⋅  (3.3) 

Obviously the conversion of energy from electric 
to kinetic is far from being optimal, but we could 
suppose that between the power system and payload 
(i.e. catapult or gun) the spacecraft is able to convert 
50% of the energy available into kinetic energy [27] 
(i.e. 50% of mechanical loss). The excess velocity of 
the expelled material and the mass expelled with each 
shot are two parameters that would come from the 
engineering design of the system. However, in the 
literature it is common to read that an optimal and 
realistic excess velocity would be in between 100 and 
300 m/s [27][28] from which expelled mass can be 
estimated. 

Once the spacecraft has landed and the operations 
have started, it would dig and collect material during 
most of its operating time and shot this material when 
pointing within 5 degrees of the orbital tangential 
direction. 

Spacecraft Sizing 

In our case the 50% of the dry mass has been 
considered to be power system, as it needs to be 
maximized. We average the specific power of several 
power systems, since is not into the scope of this paper 
to discuss the best engineering design, but to compare 
methods. The ratio obtained is 20 W/kg [26] and with 
this the power available is known. With the rotation 
period and the configuration described above is 
straightforward to calculate the time available to shot, 
consequently the energy is known, and since we have 
fixed the excess velocity to 200 km/s the mass 
expelled can be worked out with Eq. (3.3). 
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The change in the velocity of the asteroid is 
determined using a simple conservation of linear 
momentum and taking into account the change in the 
asteroid mass due to every shot.  

( )
launch

e
NEO

m v
m t

δ =v  

At each δ v  corresponds a finite variation in orbital 
elements and the new set of orbital parameters must be 
calculated before the subsequent impulsive action. The 
finite change in the true anomaly has been added to the 
Gauss’ equations (2.2) as well: 

1 2sin 2 cosδθ θδ θ δ⎡ ⎤⎛ ⎞= − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦dt t
rv e v

ev a n  

The mean anomaly before each mass ejection is 
computed by the first equation of (2.5) and from that 
the Kepler’s equation is solved for the osculating 
eccentric anomaly and the true anomaly, by a Newton 
method described in [22]. 

Nuclear Blast 

Despite the three possibilities related with nuclear 
technology (i.e. stand-off, surface or buried 
explosions), we just considered the stand-off 
explosions in this paper. The reason is because a 
nuclear explosion at a certain distance of the asteroid 
is relatively solid against the uncertainties on asteroid 
materials, components, shape, etc. Therefore, since the 
goal was to compare nuclear technology methods, the 
stand-off technique seemed a good candidate. 

Stand-off model 

The kinetic energy provided using this method is 
obtained using a radiative nuclear explosive. The 
device is detonated at a certain optimal distance from 
the asteroid. Considering a spherical model of the 
asteroid this distance would be ( )2 1− R  [28], 

achieving the highest coupling in energies; 0.3 of the 
total radiative energy is delivered over a 0.3 of the 
asteroid’s area. The radiation projected over the 
asteroid is absorbed by a thin layer of surface, the 
depth depends on the penetration of the nuclear 
radiation and the density of the asteroid, in our model 
it has been considered 20 cm [28]. 

Because of the sudden change in temperature, a 
tensile failure of the surface is expected. This 
phenomenon would expel the mass radiated with a 
certain velocity (44 m s-1 kton-1 [28]). Taking into 
account the scattering of the surface material, the 
lineal momentum provided to the asteroid is 
calculated. 

Spacecraft Sizing 

Thinking in the warhead carried as the payload of 
the spacecraft, we can suppose then that the 30% of 



the dry mass will be the nuclear device [26]. Knowing 
the mass of it, the energy available in the explosion is 
calculated using the ratio 0.75 ktons kg-1 [29][30]. 
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The excess velocity is calculated next, using the 
following relation: 

[ ]1 10.3 44eV m s kton Energy ktons− −⎡ ⎤= ⋅ ⋅ ⋅ ⋅⎣ ⎦  
The approximate ratio of asteroid blown off after 

the nuclear explosion would be: 
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To conclude, the increment in the asteroid velocity 
is computed using: 

( )1
e ScatteringVolume V s

v
Volume
⋅ ⋅

Δ =
−

 

This resulting increment of velocity is performed in 
the direction of the final velocity of the transfer 
trajectory, which depends on the arrival and launch 
date. 

 Kinetic Impactor 

The Kinetic Impactor is the simplest concept of 
asteroid hazard mitigation. Here the asteroid linear 
momentum is modified by the collision of a certain 
mass, the spacecraft. This collision is modelled as a 
simple inelastic collision with a certain momentum 
enhancement [6]. 

 This factor takes into account that despite the 
momentum provided to the initial mass of the asteroid 
is only the calculated using the inelastic collision 
model, the momentum of the asteroid itself is 
enhanced by the blast of material expelled after the 
collision. In order to be conservative in our models, 
the value of the enhancement chosen is 2, as at the 
light of Tedeschi’s experiments seems that this value 
could be between 2 and 5.  

The variation of velocity imparted by the 
spacecraft (i.e. impactor) is therefore given by: 

( )
/

/
/

δ β= Δ
+
S C

S C
NEO S C

m
m m

v v  

Where β  is the momentum enhancement factor 
and the relative velocity of the spacecraft with respect 
to the asteroid at the deviation point /Δ S Cv  is 
computed from the solution of a Lambert’s problem, 
consequently the direction of the δ v  provided 
depends on the arrival and launch date. 

4. TRANSFER TRAJECTORY 

The transfer path and the consequent propellant 
mass required have been determined with two 
techniques, depending of the propulsion system 
adopted. For a high-impulse system a two-impulse 
Lambert’s solver has been used, while for a low-thrust 
trajectory a shape-based approach has been followed 
instead [31]. In this work for the kinetic impactor and 
the nuclear blast strategies a high-impulse trajectory 
has been selected with a specific impulse of 315 s, 
while for the other deviation methods a low-thrust 
transfer with specific impulse of 2500 s has been 
computed. 

5. OPTIMISATION PROCEDURE 

A multi-criteria optimisation allowed a comparison 
of different strategies. The search of optimal sets of 
optimisation parameters is performed by a global 
optimisation procedure based on an incremental 
branch and prune of the solution space, combined with 
an agent-based search technique [32]. 

A convenient representation of the optimal sets is 
the Pareto front constituted by all the sets that have 
higher fitness and lower cost than points 
corresponding to other choices of parameters and are 
said to be “dominated” by another point. According to 
the definition, a set of parameters is Pareto optimal if 
there exists no other feasible vector of variables which 
would decrease some criterion without causing a 
simultaneous increase in at least one other criterion. 
This definition gives not one unique solution, but a set 
of not-dominated solutions, that generate the Pareto 
front. 

Optimisation parameters 

The MOID between the Earth and the NEO orbits 
has been calculated and a certain date when the 
asteroid crosses this point has been selected. The Earth 
is not necessary in that point on the crossing time, 
because the aim of this model is to measure the 
achieved deviation not to reproduce a real impact 
scenario. The selected figures of merit of the 
optimisation procedure are: 
 the warning time = −w d MOIt t t D , defined as the 

interval between the launch date and the time at the 
MOID; 

 the mass in space  is the wet mass on the Earth 
orbit after launch; 

0m

 the total deviation Δr  at the MOID. 
In order to submit to the hypotheses of the 

proximal motion equation the relative orbit radius δr  



must be small compared with the nominal orbit radius 
, the maximum deviation accepted has been fixed as 

the Earth-Moon distance, being this one a sufficient 
deviation in order to avoid any impact. 

r

6. ANALYSIS 

In order to obtain a convenient set of data from 
which to perform not just a comparison of the different 
strategies but to contrast their performance with 
different NEO characteristics, it was decided to 
choose, as a first set, 6 asteroids from the three NEO 
categories (Apollo, Atens and Amor). These asteroids 
where chosen to be within 1 to 9 x 1010 kg and 1 to 9 x 
1012 kg in mass (Table 6.1). 

 
Table 6.1: Asteroids chosen for this analysis. 

NEO Category 1-9 x 1010kg 1-9 x 1012kg 
Atens Apophis 1999KW4 
Apollo Itokawa Castalia 
Amor Quetzalcoatl Nyx 

 
The solutions for each of these asteroids can be 

summarized in a set of Pareto fronts, one for each 
strategy. In this paper just one Pareto front for each 
deviation method has been represented: Nuclear 
Impactor Pareto front for 19999KW4 in Figure 6.1, 
Solar Collector Pareto front for Nyx in Figure 6.2, 
Kinetic Impactor Pareto front for Apophis in Figure 
6.3, Electric Propulsion Pareto front for Castalia in 
Figure 6.4, and Mass Driver Pareto front for Castalia 
in Figure 6.5. In fact, despite the physical and orbital 
differences among the NEO from Table 6.1, the shape 
of the Pareto fronts is most strongly defined by the 
mitigation strategy used. 

NEO orbital characteristics, size and rotational 
period play as well an important role in modelling the 
surface of the Pareto front, sizing it and changing 
slightly the inclination and position in the three 
dimensional space formed by mass in space (m0), 
warning time (tw) and deviation δr  at the MOID. 

 

 
Figure 6.1: Nuclear Impactor Pareto front for 1999KW4. 

 
As can be observed there are two common features 

in all the Pareto fronts. The former, the increase of 
deviation in m0 (initial mass) dimension, with linear or 
quadratic behaviour, which is directly related with the 
analytic models developed for this experiment. The 
latter, the orbital period periodicity in the warning time 
(tw) dimension, directly related with the optimal 
moment during the orbit to apply the increment of 
velocity or to start to apply the acceleration. Note that 
for low thrust propulsion this periodicity of the orbit is 
only evident for short warning times, consistent with 
the fact that for long warning times the moment during 
the orbit chosen to start the impulse is less decisive. 
For most of the methods it is possible to make out the 
waves due to the asteroid orbit periodicity, although 
because of the dominance of the surface this shape has 
been reduced to steps. 

 

 
Figure 6.2: Solar Collector Pareto Front for Nyx. 

 
Clearly, the two deviation methods that achieve the 

best results are Nuclear Impactor and Solar Collector. 
The plateau at the top of both Pareto fronts is due to 
the limit in deviation that it was chosen. This limit 



stops the program when the deviation reaches the 
Earth-Moon distance. 

 

 
Figure 6.3: Kinetic Impactor Pareto front for Apophis. 

 
Despite the Plateau for the Nuclear Impactor, 

Nuclear and Kinetic have similar functioning. Since 
the two methods are impulsive methods, the Pareto 
front is dominated by the periodicity of the asteroid. 

 

 
Figure 6.4: Electric Propulsion Pareto front for Castalia. 

 

 
Figure 6.5: Mass Driver Pareto front for Castalia. 

7. MULTICRITERIA ANALYSIS 

The data of the different methods and asteroids has 
been compared studying its dominance. 

A component i of method A is said to dominate a 
component j of method B if all the elements of B

jf  are 

smaller than all the elements of , where: A
if

 1, 2, ,, ,...,
TA A A A

i i i k if f f⎡ ⎤= ⎣ ⎦f  
The dominance of an element i of method A with 

respect to method B is the cardinality of the set of 
dominated components. 
 { }( ) |= ≺A B

i A i jI m j f f  

Method A dominates method B if the sum of 
components of A that are dominated by B is less than 
the sum of the components of B that are dominated by 
A. 
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The dominance of the different methods is 
represented here in Table 7.1, Table 7.2 and Table 7.3. 
To understand the table we look at a certain column 
and check the value in a certain row. If this value is 
positive means that the method in the column 
dominates the method in the row, if it is negative 
means that the column method is dominated. 

 
Table 7.1: Nyx Comparison table (a=1.93 A.U.). 

 Nuke Impactor Solar MD 
Impactor 100    
Solar M. 100 -100   

MD 100 -100 86  
LT 100 -100 100 100 

 
Table 7.2: Castalia Comparison table (a=1.06 A.U.). 

 Nuke Impactor Solar MD 
Impactor 48    
Solar M. 74 -100   
MD 92 -100 100  
LT 88 -100 100 100 

 
Table 7.3: 1999KW4 Comparison table (a=0.64 A.U.). 

 Nuke Impactor Solar MD 
Impactor 99.9    
Solar M. -32 -100   

MD 99.9 -100 100  
LT 99.9 -99 100 100 



 
The results in these tables are the difference 

between the approximate percentage of dominance; for 
example in Table 7.3 (i.e. 1999KW4) the nuclear 
method is dominated by the solar by a 34%, which 
means that solar method dominates over nuclear in 
68% of the domain, therefore the difference between 
Solar and Nuclear domination is 32%. 

If the sum of the two percentages is more than 100 
it indicates that in some regions of the domain both 
methods have equal dominance. 

For Nyx and Castalia, the results show a clear 
domination of the nuclear method, followed by Solar, 
Mass Driver, Low Thrust and Kinetic, in this order. 
While for 1999KW4, Solar Method dominates over the 
others, followed by Nuclear, Mass Driver, Low Thrust 
and Kinetic Impactor. 

This difference between the Atens asteroid and the 
other two is due to the semi-major axis, since it is 
directly related with the solar flux. 

We can observe the same behaviour with the three 
small asteroids. Again with Apophis we observe a 
dominance of the Solar Collector over the others. 

Technology Readiness Level 

As an additional criterion we consider the 
technology readiness level of each method as a 
measure of the expected reliability. We define a TRL 
factor or TRLf by mapping the scale from 1 to 8 (Table 
7.4) into the interval [0 1], where TRLf equal to 1 
means full operational capability. 

 
Table 7.4: Technology Readiness Levels. 

1 No development performed 

2 Conceptual design formulated 

3 Conceptual design tested analytically or experimentally 

4 Critical function/characteristic demonstrated 

5 Component or Breadboard tested in relevant environment 

6 Prototype/engineering model tested in relevant environment 

7 Engineering model/similar equipment tested in space 

8 Full operational capability 

 
After an extensive debate to allocate every method 

with a certain TRL, where it was taken into account 
past missions, experiments and literature publications, 
the TRLf vector became (Table 7.5): 

 

Table 7.5: TRLf for the different deviation strategies. 

Strategies TRLf 
Nuclear Impactor 0.5 
Kinetic Impactor 1 
Solar Collector 0.375 
Mass Driver 0.375 
Electric Propulsion 0.5 

 
 Despite the fact that no mission to test this 

technology is flying, Kinetic Impactor technology has 
been considered to be fully developed, TRL 8. 
Examples of this technology are many and even a 
deflection mission with scheduled launch in 2011, 
called Don Quijote. 

 Nuclear and Low-Thrust technology has been 
considered to be in intermediate stage where the 
critical function and characteristics has been 
demonstrated. The main reason is because even when 
the basic technology is completely tested the 
environment in which would be used would be 
completely different from what was designed and 
tested. 

Finally, Solar Collector and Mass Drivers are 
believed to be in a TRL 3. Basic experiments with the 
technology to be used have been already performed, 
examples are deployment of inflatable structures, 
autonomous drilling of surfaces, etc. 

The warning time (tw) is divided by the TRLf to 
account for the required time to develop a certain 
technology. Tables 7.6, 7.7 and 7.8 must be handled 
carefully, since these results are the outcome of 
stretching the tw dimension. 

 
Table 7.6: Nyx TRL table (a=1.93 A.U.). 

 Nuke Impactor Solar MD 
Impactor 0    
Solar M 100 0   

MD 100 0 85.9  
LT 100 0 82.3 82.3 

 
Table 7.7: Castalia TRL table (a=1.06 A.U.). 

 Nuke Impactor Solar MD 
Impactor 45.6    
Solar M 97.2 -45.44   

MD 100 -45.5 100  
LT 88.4 41.4 87.6 87.6 



 
Table 7.8: 1999KW4 TRL table (a=0.64 A.U.). 

 Nuke Impactor Solar MD 
Impactor 0    
Solar M 78.7 0   

MD 100 0 100  
LT 100 43.2 71.1 71.1 

 
The first conclusion from the TRLf dominance is 

that Kinetic Impactor cannot be disposed as a reliable 
method. When Technology Readiness is considered 
the Kinetic Impactor Pareto front covers parts of the 
domain that the other strategies are not able to cover, 
this is obviously as a result of the tw stretching. 

Maybe, the most important conclusion from the 
TRLf calculation is that Kinetic Impactor dominates 
clearly over Low-Thrust. 

8. FINAL REMARKS  

In this work, different strategies to deviate 
dangerous NEO have been modelled and compared. A 
set of analytical formulas have been proposed to 
compute the variation of the MOID due to a given 
deviation strategy. The variation has been expressed as 
a function of the warning time and the wet mass of the 
spacecraft at the Earth. 

The comparison has been performed on three 
classes of asteroids, by means of a multi-criteria 
optimisation. The sets of Pareto optimal solutions for 
each strategy have been compared by defining the 
dominance of one Pareto set over another. Moreover a 
technology readiness factor has been introduced in 
order to estimate the actual required warning time. 

This preliminary comparison demonstrated how the 
nuclear blast and the solar concentrators are generally 
dominant if the TRL is not taken into account. On the 
other hand if the TRL is considered the Kinetic 
Impactor becomes competitive. 

A more accurate comparison would require an 
improvement of all the models as well as to take into 
account a possible fragmentation of the asteroid due to 
a too aggressive action. 
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