
 

Permanent link to this version 

http://hdl.handle.net/11311/1033803 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
  
 
 
 
This is the published version of: 
 
 
S. Frey, C. Colombo, S. Lemmens, H. Krag 
Evolution of Fragmentation Cloud in Highly Eccentric Orbit Using Representative Objects 
Paper presented at: 68th International Astronautical Congress (IAC 2017), Adelaide, 
Australia, 25-29 Sept. 2017, ISSN: 1995-6258, p. 1-11, IAC-17-A6.2.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
 



68th International Astronautical Congress, Adelaide, Australia. Copyright c© 2017 by Stefan Frey et al. Published by the
IAF, with permission and released to the IAF to publish in all forms.

IAC–17–A6.2.6

Evolution of Fragmentation Cloud in Highly Eccentric Orbit using Representative Objects

Stefan Freya*, Camilla Colomboa, Stijn Lemmensb, Holger Kragb

aPolitecnico di Milano, Department of Aerospace Science and Technology, Milan, Italy
bSpace Debris Office, ESOC/ESA, Darmstadt, Germany
*Corresponding author; stefan.frey@polimi.it

Abstract
Many historical on-orbit satellite fragmentations occurred in Highly Eccentric Orbits (HEOs) such as the

Geostationary Transfer Orbit (GTO). Such fragmentations produce fragment clouds that interfere with the
Low Earth Orbit (LEO) environment and pose a threat to operational satellites. Objects in HEO undergo
complex dynamics due to the influence of perturbations varying as a function mainly of their altitude and
area-to-mass ratio. The evolution of such a cloud, including small objects down to 1 mm, is not well
understood.

This paper describes a method to model the evolution of a fragmentation cloud in HEO under the influence
of atmospheric drag and Earth’s oblateness. Semi-analytical techniques are applied to propagate represen-
tative objects constituting the cloud; rather than following the evolution of many distinct fragments. The
proposed method is applied on a GTO upper stage using the standard NASA break-up model to find the
distribution right after the fragmentation. The evolution of the fragment cloud is analysed statistically and
time of closures are calculated for the formation of the torus along the parent orbit and the band around
Earth. Assumptions on the evolution of the cloud that are valid in LEO are shown to be invalid for clouds
in HEO.
Keywords: Fragment Cloud, Highly Eccentric, Representative Objects

1. Introduction

More than half of all the observable objects cur-
rently orbiting Earth originate from fragmentations
of spacecraft or upper stages [1]. More fragments are
being added every year. Since 1980, the 10-year av-
erage number of break-up events remains above 5 a
year, some of them adding hundreds to thousands of
new trackable objects [2]. Much effort was put into
understanding the adverse consequences of such an
on-orbit break-up towards collision probability of or-
biting satellites [3] via deterministic or statistic meth-
ods that propagate the whole evolution of orbiting ob-
jects including fragments and operational spacecraft.
Typically, the evolution of the cloud is separated into
3− 4 different phases [4, 5]:

1. Shortly after the break-up, the cloud forms an
ellipsoid due to different velocity conditions of
the fragments relative to the main body;

2. Owing to different semi-major axes and their
corresponding periods, it quickly evolves into a
torus, spreading the fragments along the orbit;

3. Being differently susceptible to precession rates

mainly induced by Earth’s oblateness, the frag-
ments spread in right ascension and argument of
perigee;

4. Finally, the cloud forms a band around Earth
that extends in values of latitude approximately
up to the inclination of the parent orbit.

Ideally, the perturbations acting on the evolution
of the cloud can be separated by the phases, e.g.
forces induced by drag are only considered after the
formation of the band [5, 6]. For near-circular orbits
in Low Earth Orbit (LEO), this assumption is gen-
erally valid as the time for the band to form (couple
of months to years) is usually small compared to the
rate of decrease in altitude. The dynamics in the last
phase can then be studied analytically, incorporating
also small objects and taking into account a simpli-
fied air drag model [7, 8, 9]. However, for objects
in highly eccentric orbit (HEO), especially with low
perigee heights, this assumption does not always hold
true. The time it takes to form the band can span
several decades.

Since 2000, 42 out of the 90 non-deliberate, on-
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Fig. 1: On-orbit fragmentations since the year 2000,

excluding collisions and deliberate explosions. The
area and colour of the points describe the number
of resulting observable fragments, Nf , and the in-
clination respectively.

orbit explosions occurred in HEO (see Figure 1), re-
sulting on average in 26.9 observable objects across a
large inclination range [1]. However, the available lit-
erature on the evolution of fragment clouds in HEO is
sparse. Jenkin and Sorge [10] studied only the short-
term behaviour and impact of debris clouds from an
isotropic break-up in eccentric orbit in unperturbed,
Keplerian motion. Letizia et al. [11] extended the
continuity equation method to incorporate eccentric-
ity, however the method is limited to low eccentric or-
bits (e < 0.1). Tools to predict the future space debris
environment like LEGEND [12] and DELTA [13], can
incorporate fragmentations in any orbit. But they
are based on drawing discrete fragments from a given
break-up probability distribution, getting statistical
relevance only via many Monte Carlo runs. This gives
little insight into the ramifications of a single break-
up in HEO.

In this paper, the evolution of the debris cloud
originating from a fragmentation in the Geostation-
ary Transfer Orbit (GTO) is studied. GTO is a sub-
set of HEO containing more than 200 large upper
stages that delivered spacecraft into the Geostation-
ary Orbit (GEO), and now cross the highly populated
LEO region at velocities larger than 11 km/s. Col-
lision probabilities in GTO are small [14], but each
new fragmentation will add objects that potentially
lead to follow-up collisions with LEO residents.

Starting from the NASA break-up model [15], a

method is presented to select representative frag-
ments. These fragments are propagated under the
influence of air-drag and the second order zonal har-
monic, J2. The assumption of separating the evolu-
tion of the cloud into different phases is tested with a
simulated upper stage explosion in GTO, by studying
the distribution of the fragment orbital elements.

The paper is organised as follows: the methodol-
ogy is described in Section 2 to 5. Section 2 describes
the fragmentation model, Section 3 the selection of
the representative objects via gridding, Section 4 the
applied propagation scheme and Section 5 the deriva-
tion of decay rate and time of closure. Section 6 shows
results for a simulated fragmentation and Section 7
summarises the conclusion reached and proposes fu-
ture work.

2. Fragmentation Model

The key indicators of a fragment cloud are number
of fragments, Nf , generated via an explosion or colli-
sion event in space, and the area-to-mass ratio, A/m,
and relative velocity with respect to the parent orbit,
∆vvv, of each resulting fragment. The NASA break-up
model [15] provides Nf as a function of the charac-
teristic length, Lc, and the probability distributions
for A/m and relative velocity magnitude ∆v = ||∆vvv||,
conditionally dependent on Lc and A/m respectively.
The probability density functions (PDFs) of these
variables are given below. The direction of the rela-
tive velocity, nnn∆v = ∆vvv

∆v , is assumed to be isotropic.

2.1 Characteristic Length Lc

The number of fragments are defined differently for
explosions and collisions and subsequently described.

2.1.1 Explosions

The cumulative number of fragments for an explo-
sions is [15]

NE(Lc) = 6SL−1.6
c (1)

where S is a type-dependent, unitless number. From
Equation 1, and introducing the cut-off characteris-
tic length Lc,θ = 1 mm, the cumulative distribution
function (CDF) FELc

can be found as

FELc
(Lc, Lc,θ) =

1−
(
Lc
Lc,θ

)−1.6

∀Lc > Lc,θ

0 otherwise

(2)

and by taking its derivative, the PDF fELc
is
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fELc
(Lc, Lc,θ) =

1.6
L−2.6
c

L−1.6
c,θ

∀Lc > Lc,θ

0 otherwise

(3)

2.1.2 Collisions

Similarly, the cumulative number of fragments for
a collision can be approximated as [15]

NC(Lc) = 0.1M0.75L−1.71
c (4)

where M = M(Mt,Mp,∆vr, θ) is the mass involved
in the fragmentation and dependent on the collision
energy. It can be derived from the target and projec-
tile masses, Mt and Mp, the relative collision velocity
between the target and the projectile, ∆vr, and the
threshold specific kinetic energy, θ, typically set as
θ = 40 kJ/kg [16].

Again, the derivations of the CDF and PDF are
straightforward

FCLc
(Lc, Lc,θ) =

1−
(
Lc
Lc,θ

)−1.71

∀Lc > Lc,θ

0 otherwise
(5)

fCLc
(Lc, Lc,θ) =

1.71
L−2.71
c

L−1.71
c,θ

∀Lc > Lc,θ

0 otherwise

(6)

2.2 Area-to-Mass Ratios A/m

The PDF of A/m, is defined in the logarithmic
space with base 10, and conditionally dependent on
λc = log10 Lc. With χ = log10(A/m), it is de-
fined as a weighted summation of normal distribu-
tions N (·, µ, σ)

f A
m |Lc

(χ, λc) =

3∑
i=1

βiαiN (χ, µi, σi|λc) (7)

where αi, µi and σi are a function of the dependent
variable λc and different for fragmenting spacecraft or
upper stages. The parameters for small (Lc < Lsc =
8 cm; i = 1) and large (Lc > Llc = 11 cm; i = 2, 3)
fragments for both types can be found in [15]. Here,
a bridging function, βi = βi(λc), is introduced that
ensures continuous transition between Lsc < Lc < Llc.
Both the parameters for small and large fragments
are continued into the transition phase and weighted
linearly

βi(λc) =

{
β(λc) for i = 1

1− β(λc) for i = 2, 3
(8)

where (defining λsc = log10 L
s
c and λlc = log10 L

l
c)

β(λc) =


1 ∀λc < λsc

0 ∀λc > λlc

1− λc − λsc
λlc − λsc

otherwise

(9)

Figure 2a shows the PDF in A/m for different Lc
and A/m for the case of an upperstage fragmenta-
tion. The dashed lines highlight the bridging function
between small and large fragments. Most of the ex-
plosion fragments have an A/m within 0.1−2 m2/kg.

2.3 Relative Velocity Magnitudes ∆v

The probability of relative velocity between the
parent orbit and the fragments, ∆v, is described via
a single normal distribution in the log10-space, with
A/m as the conditional dependent variable. The pa-
rameters defining the distributions are different for
spacecraft and upper stages. The values can be found
in [15]. Defining ν = log10(∆v), the PDF is

f∆v| Am (ν, χ) = N (ν, µν , σν |χ) (10)

Figure 2b shows the PDF in ∆v in case of an ex-
plosion.

3. Selection of Representative Fragments

The PDF of a single object having characteristics
Lc, A/m and ∆v can be found by combining Equa-
tions 3 or 5 with 7 and 10

fLc,
A
m ,∆v = f∆v| Am f A

m |Lc
fLc

(11)

The number of dimensions can be reduced by re-
duction of Lc, which is not a relevant parameter for
the propagation

f A
m ,∆v = f∆v| Am

∫
Lc

f A
m |Lc

fLc
dLc (12)

To find the evolution of the cloud, three different
approaches can be taken:

• Draw and propagate distinct fragments. How-
ever, this requires many instances and the out-
come will be different for every run;

• Convert the distribution into convenient ele-
ments to propagate directly the density of frag-
ments. However, this requires a closed-form so-
lution that is accurate enough for the conversion
of the PDF;
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Fig. 2: Fragment distribution for an upper stage explosion.

• Find representative objects that describe the
cloud accurately and completely enough in terms
of probabilities.

The second approach can be implemented via the
Gauss planetary equations [17]. Yet these equations
were conceived assuming small accelerating perturba-
tions. According to the model described in Section 2,
around 30% of the fragments have a ∆v > 100 m/s.
For such a ∆v, the Gauss planetary equations start
to divert from the solution obtained by converting a
parent orbit from Keplerian elements into Cartesian
coordinates, adding the perturbation and converting
back (see Figure 3).

Instead, the approach of selecting representative
objects is applied.

In order to find representative objects, the remain-
ing two dimensions, A/m and ∆v, are split into Ni
and Nj finite, logarithmically spaced bins, d(A/m)i
and d(∆v)j , each two-dimensional bin representing
an object having the characteristics A/m ∈ d(A/m)i
and ∆v ∈ d(∆v)j , with the probability

P ijA
m ,∆v

=

∫
A
m

∫
∆v

f A
m ,∆vd(∆v)jd(A/m)i (13)

Instead of logarithmic bins, the bin sizes could
also be chosen such that all representative objects
are equally likely, which was shown to be more ac-
curate [8]. However, the selection of equally likely
objects over a complex two-dimensional probability
distribution is outside of the scope of this paper.

To reduce the number of propagations, the grid
points with probability less than the α-quantile, qα,
over all (ij), are discarded. Figure 4a shows the grid
for an upper stage explosion, for Ni = Nj = 100 and
α = 99.9%.

To fully describe a fragment, the probability and
thus the grid in nnn∆v needs to be defined. Here, a Fi-
bonacci lattice [18] was used to define the two direc-
tion angles, the longitude, θ and the latitude, φ. The
Cartesian coordinates in which nnn∆v is defined can
be chosen arbitrarily, as the distribution is isotropic
and thus invariant under coordinate transformations.
Each of the Nk direction grid points, quasi-uniformly
distributed over the sphere, are assumed to be equally
likely with Pnnn∆v

= 1
Nk

. An example showing a Fi-
bonacci lattice with Nk = 101 points can be found in
Figure 4b.

Hence, the final grid point probability is

P ijkA
m ,∆v,nnn∆v

=
1

Nk
P ijA

m ,∆v
(14)

Note that the theory is developed looking only at
a single fragment and its probability of presence in
the characteristics A/m and ∆vvv, comparable to the
quantum state describing the electron PDF around
atom nuclei in quantum mechanics. However, by mul-
tiplying Equation 14 with the (constant) number of
fragments Nf , and assuming no inter-fragment in-
teraction, the distribution of the whole cloud can be
deduced. Hence, the distribution of the fragment and
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Table 1: Smooth atmosphere density model parame-
ters, resulting from a fit to Jacchia-77 [22], with
an exospheric temperature, T∞ = 750 K.

p Hp ρ0,p

[km] [kg/m3]
1 4.880 3.932× 10+02

2 9.734 2.099× 10−03

3 20.25 1.462× 10−06

4 33.54 2.386× 10−08

5 47.52 2.808× 10−09

6 136.1 2.384× 10−13

7 239.1 5.070× 10−14

8 1073 5.988× 10−16

the distribution of the fragment cloud is used inter-
changeably throughout this report.

4. Orbit Propagation

Since many grid points have to be propagated for
a long time, the semi-analytical propagator PlanO-
Dyn [19] is used. The fragment cloud is subjected to
the second-order zonal harmonic, J2, and air-drag.
Solar radiation pressure and luni-solar effects are ne-
glected in this work and will be added in a future ex-
tension. Owing to differences in the initial conditions,
the effect of J2 leads to different precession speeds in
ascending node, Ω, and argument of perigee, ω, ul-
timately leading to the fragment cloud being spread
into a band around Earth. The air-drag removes en-
ergy from each fragment, forcing it to decay. Here,
a smooth exponential atmosphere density model, ρS ,
combined with the superimposed King-Hele contrac-
tion model is used to calculate the rate of orbit de-
cay [20, 21]. The model, dependent on the altitude,
h, and valid for any h > 100 km is defined as

ρS(h) =

P∑
p=1

ρ0,p exp− h

Hp
(15)

with base densities, ρ0,p, and scale heights, Hp, listed
in Table 1.

The fragment initial conditions and characteris-
tics depend on the parent orbit and location, αααp =
(a, e, i,Ω, ω, f), and the grid given in Section 3, with
the semi-major axis, a, eccentricity, e, inclination, i,
and true anomaly, f . As nnn∆v is given in (any) Carte-
sian coordinates, αααp needs to be transformed into the
same coordinates, rrrp = (xxx,vvv), before applying the ve-
locity variation. Subsequently, the deviated coordi-
nates, rrrjk = (xxx,vvv+ ∆vvvjk), are transformed back into
Keplerian elements, αααjk, for propagation. Note that

Table 2: Fragmentation parent orbit in GTO and
fragmenting at perigee.

a e i Ω ω f
[km] [deg] [deg] [deg] [deg]

24492 0.7188 8.4 73.4 225.9 0

the deviated initial conditions use the mean anomaly,
M , as a starting point of each propagation.

The representative objects are propagated for
200 years or up until re-entry.

5. Decay Rate and Time of Closure

Given the propagated cloud, the probability of
an fragment to be within a certain phase space,
Pf (∆t), at a given time after the fragmentation, ∆t,
is estimated by summing up the grid probabilities,
P ijkA

m ,∆v,nnn∆v
, of all the propagated initial conditions

that reside in that space at time ∆t. Summing up all
Pf over the whole physically valid phase space results
in the on-orbit dwelling probability, Pd.

To calculate the time of closure, T , a Kuiper’s
test [23] is performed, comparing the distribution
against the uniform hypothesis on a circle, H0:
fH0

(x) = 1
2π ∀x ∈ [0, 2π]. This test is ideal for distri-

butions on a circle, as the result is independent from
the starting value for the calculation of the CDF. H0

is rejected as long as the p-value, p, is lower than
αp = 5%. Since the PDF is not sampled, but gridded
over, the effective number of samples, Ne, to calcu-
late p cannot be chosen as N . Instead, an optimistic
N−1
e = maxijk P

ijk is chosen. Such a test is per-
formed for the distributions in Ω, ω and M , resulting
in TΩ, Tω and TM . The formation of the band around
Earth is reached, when ∆t = TB = max(TΩ, Tω, TM ).

To give a measure of the influence of air-drag on
the evolution of the cloud, the a- and e-quantiles, qα,
are calculated, giving the evolution of the upper limit
in a and e of α percent of all the object probability.

6. Results

A upper stage explosion is simulated in GTO, fol-
lowing a real event in January 2001 of the fragmen-
tation of a then 12 year old Ariane 2 third stage [24].
As the fragmentation location is unknown, it is arbi-
trarily chosen to be at f = 0◦. Table 2 contains the
parent orbit information. All fragments with length
between 10−3 ≤ Lc ≤ 101 m are considered. The
grid in A/m and ∆v is done in Ni = Nj = 100
logarithmic steps from 10−3 ≤ A

m ≤ 102 m2/kg
and 10−1 ≤ ∆v ≤ 104 m/s respectively. Only

IAC–17–A6.2.6 Page 6 of 11



68th International Astronautical Congress, Adelaide, Australia. Copyright c© 2017 by Stefan Frey et al. Published by the
IAF, with permission and released to the IAF to publish in all forms.

20000 25000 30000 35000

Semi-major axis a [km]

0.65

0.70

0.75

0.80

E
cc

en
tr

ic
it

y
e

[-
]

7.5 8.0 8.5 9.0 9.5

Inclination i [deg]

65.0

67.5

70.0

72.5

75.0

77.5

80.0

R
A

A
N

Ω
[d

eg
]

220 225 230 235

Argument of Perigee ω [deg]

−0.4

−0.2

0.0

0.2

0.4

M
ea

n
A

n
om

al
y
M

[d
eg

]

0.00

0.01

0.02

0.03

0.04

P
f

[-
]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
f

[-
]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

P
f

[-
]

Initial Fragment Distribution

Fig. 5: Initial fragment distribution right after the
upper stage explosion at perigee. See Table 2 for
the definition of the parent orbit.

0 50 100 150 200

Time since fragmentation ∆t [years]

75

80

85

90

95

100

D
w

el
li
n

g
P

ro
b

a
b

il
it

y
P
d

[%
]

Decay Rate

Fig. 6: Probability of a fragment still dwelling on-
orbit after ∆t. A near linear decay rate of 1.25%
per decade can be observed.

the grid points with P ijA
m ,∆v

> q99.9% are considered

and Nk was chosen to be 101, leading to a total of
N = 266135 initial points to be propagated. Figure 5
shows the probability distribution of a fragment right
after the fragmentation. The distribution in M is
very confined for a fragmentation at perigee.

The probability of a single fragment, stemming
from the given upper stage explosion and larger than
Lc > 10−3 m to still dwell on-orbit after ∆t is given
in Figure 6. The initial decrease of about 2% right
after the fragmentation is due to fragment character-
istics leading to perigee heights within Earth’s radius,
and thus are removed instantaneously from the prop-
agation. The oscillating behaviour is caused by mul-
tiple representative fragments with the same A/m,
re-entering as clusters, a result from the grid being
to coarse. A near constant decrease of 1.25% per
every 10 years can be observed. The very slow re-
entry rates are due to the conservative atmosphere
model chosen, simulating a solar minimum for the
next 200 years.

The evolution in Ω, ω and M can be found in Fig-
ure 7. Clearly recognisable is the precession of all
the variables with J2, superimposed with the spread-
ing due to different initial conditions. As expected,
the fast moving variable M reaches closure first, after
less than 1 year. The time needed for the randomi-
sation in Ω and ω is similar in order of magnitude;
TΩ = 65 years and Tω = 41 years respectively. Fi-
nally, the band is formed after TB = 65 years.

Figure 8 shows the evolution of the PDF in a

IAC–17–A6.2.6 Page 7 of 11



68th International Astronautical Congress, Adelaide, Australia. Copyright c© 2017 by Stefan Frey et al. Published by the
IAF, with permission and released to the IAF to publish in all forms.

0 2 4

Time since fragmentation ∆t [years]

0

50

100

150

200

250

300

350

R
A

A
N

Ω
[d

eg
]

Cloud Evolution

0.0

0.1

0.2

0.3

0.4

0.5

P
f

[-
]

(a) Evolution in Ω for the first 5 years.
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(c) Evolution in ω for the first 5 years.
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(d) Randomisation in ω after Tω = 41 years.
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(e) Evolution in M for the first 36 days.
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(f) Randomisation in M after a couple of months.

Fig. 7: Evolution of distribution of Ω, ω and M . Left: probability distribution, right: Kuiper’s statistic
(dashed line: αp = 5%). Note the differences in ranges for ∆t.
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(a) The peak density remains almost constant in location,
while becoming smaller due to spreading towards lower a.
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(b) Likewise, the peak probability remains close to the
initial peak, while spreading towards smaller e.

Fig. 8: Evolution of distribution in a and e for 200 years. The colormap shows the probability in presence,
while the quantiles, qα, divide the lower α and the upper 1− α percent of the presence probability.

Table 3: Evolution of fragment distribution for dif-
ferent grid sizes; time required for 25% of the
fragment probability to decay (q25%) and upper
limit in a for 50% (q50%), and 75% (q75%) of the
distribution after 200 years.

Ni Nj Nk q25% q50% q75%

[years] [km] [km]
25 25 25 169.9 18809 23079
50 50 50 187.9 18995 23150
75 75 75 192.9 19260 23215

100 100 101 193.9 19275 23248
50 100 101 190.9 19203 23257

100 50 101 195.9 19399 23232
100 100 51 196.9 19413 23213

and e together with the qα overlayed. 65 years af-
ter the fragmentation, the a-band containing 50% of
the probability distribution from q25% to q75% almost
quintuples from 1300 to more than 6000 km. The
equivalent e-band increases more than 6-fold in the
same time range (from 0.015 to 0.099). At the same
time, the peak density in a shifts by −360 km and
shrinks by 70% after 65 years. The peak density
in e shifts by −0.004 and also shrinks by the same
amount. The alert reader can spot rays in the figures,
again representing clusters of representative objects
with the same A/m. The lower Ni is chosen, the less
– but instead more pronounced – the rays could be

discerned. Interpolation between the grid points, i.e.
using differential algebra, would remove these rem-
nants of the grid. For qualitative description of the
cloud, the size of the grid points for this orbit can be
chosen lower, as the evolution profile saturates after
Ni ×Nj ×Nk = 50× 50× 51 (see Table 3).

The shape of the PDF in a and e changes consider-
ably during the formation of the band. Thus it is not
valid to ignore air-drag during this time. It is still to
be checked if the evolution of the real fragmentation
cloud follows the one calculated here. Unfortunately,
as only large fragments are observed (less than 100),
the comparison would yield only little insight.

7. Conclusion and Future Work

Traditionally, the evolution of a cloud of fragments
in LEO is separated by phases. The time to form a
torus along the parent orbit is short enough to ig-
nore perturbations. Then, while the cloud spreads
out to form a band due to J2, the influence of air-
drag is neglected. Lastly, after the formation of the
band, only air-drag is considered. For each of these
phases, the evolution of the fragment distribution is
described [5, 8].

This paper showed on a study case in GTO us-
ing the NASA break-up model [15] and representa-
tive fragments propagated semi-analytically, that the
time for formation of the torus along the parent or-
bit requires months and the formation of the band
around Earth requires 10s of years in HEO. Enough
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time passes, for the evolution in a and e to change
considerably, making the assumption that air-drag
plays a minor role until formation of the band invalid.

Future work includes the addition of solar radi-
ation pressure and third body perturbations during
propagation, the study of different parent orbit con-
figurations, the removal of sensitivity on the selection
of grid points via differential algebra and the calcula-
tion of the collision risk for objects in LEO following a
fragmentation in HEO. Further, instead of propagat-
ing representative fragments, the probability density
function will be calculated directly in Keplerian ele-
ments to allow for a density based propagation of the
cloud.
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