4,469 research outputs found
The Influence of Gamma-rays on the Injury and Chromosomal Aberrations of Long Bean (Vigna sesquipedalis, Fruw.)
The effects of gamma-rays on three varieties of long bean (Vigna sesquipedalis, Fruw), namely
Melaka, Local Black and Local Long were studied using Jive doses ranging from 10 to 50 kR. Both
Chromosomal aberrations and characteristics related to physiological damage were used to study
radiation sensitivity of the varieties. In general, gamma radiation did not affect % seed germination
but caused a significant reduction in characteristics related to survival, growth and fertility. Percentage
chromosomal aberrations also increased with increasing dose. As the measurement of seedling
height is simple, quick and highly correlated with most characteristics studied, it could be a useful
parameter in the study of radiation effects on long bean. Using a critenrion of approximately 30%
reduction in seedling height or 50% lethality, it is suggested that doses ranging from 30 to 50 kR
would be suitable for mutation induction in long bean
Tapered microchannel for multi-particles passive separation based on hydrodynamic resistance
Researches on separation of multi-particles utilizing microfluidic have been flourishing in recent years with the aid from advancements in microfabrication design and technology. Generally, separation is beneficial for biomedical application especially involving heterogeneous samples. Due to inherent problems of samples isolation, a simple and efficient separation device is required. Here, we present a passive tapered microchannel for multi-particles separation using hydrodynamic principle. Our emphasis is on the effect of hydrodynamic resistance coupled with tapered microchannel design. In the experiment, successful multi-particles samples separation was observed. The results were further analyzed and were in agreement with the proposed concept. This method opens the route toward robust, low-cost and high-throughput, thus it may holds potential to be integrated as one functional module in Micro Total Analysis System (µTAS)
Greenlight laser™ photovaporization versus transurethral resection of the prostate: A systematic review and meta-analysis
none9GreenLight laser™ photovaporization of the prostate (GLL-PVP) has become a valid alternative to traditional transurethral resection of the prostate (TURP) in men requiring surgery for benign prostatic hyperplasia. We aimed to review systematically the safety and efficacy of studies comparing GLL PVP and TURP in the medium-term. A comprehensive literature search was performed. Twelve studies were identified for meta-analysis. Meta-analyses showed a longer postoperative catheterization time (risk ratio (RR): 1.12, 95% CI:1.09–1.14, p<0.00001) and length of stay (RR: 1.16, 95% CI:1.12–1.19, p<0.00001) in the TURP group; higher risk of transfusion in the TURP group (RR: 6.51, 95% CI: 2,90–14,64 p<0.00001); no difference in the risk of urinary tract infections (RR: 0.83, 95% CI: 0.58–1.18, p=0.30) and transient re-catheterization (RR: 1.11, 95% CI: 0.76–1.60, p=0.60). Regarding reoperation rate, no difference was found in term of postoperative urethral stricture (RR: 1.13, 95% CI: 0.73–1.75, p=0.59) and bladder neck contracture (RR: 0.66, 95% CI: 0.31–1.40, p=0.28). A significantly higher incidence in reoperation for persistent/regrowth adenoma was present in the GLLL-PVP (RR: 0.64, 95% CI: 0.41–0.99, p=0.05). Data at 2-year follow-up showed significant better post-voiding residual (PVR) (MD:-1.42, 95% CI:-2.01,-0.82, p<0.00001) and International Prostate Symptom Score (IPSS) (MD:-0.35, 95% CI:-0.50,-0.20, p<0.00001) after TURP. No difference was found in the mean PVR at 2 years after TURP, in the mean maximum flow rate (Qmax) (MD: 0.30, 95% CI:-0.02–0.61, p=0.06) and quality of life QoL score (MD: 0.05, 95% CI:-0.02–0.42, p=0.13). At 5-year follow-up, data showed better IPSS (MD:-1.70, 95% CI:-2.45,-0.95, p<0.00001), QoL scores (MD:-0.35, 95% CI:-0.69,-0.02, p=0.04) and Qmax (MD: 3.29, 95% CI: 0.19–6.38, p=0.04) after TURP. Data of PVR showed no significant difference (MD:-11.54, 95% CI:-29.55–6.46, p=0.21). In conclusion, our analysis shows that GLL-PVP is a safer and more efficacious procedure than standard TURP in the early and medium-term. However, in the long term period GLL-PVP showed a higher incidence of reoperation rate due to incomplete vaporization/regrowth of prostatic adenoma.openCastellani D.; Pirola G.M.; Rubilotta E.; Gubbiotti M.; Scarcella S.; Maggi M.; Gauhar V.; Teoh J.Y.-C.; Galosi A.B.Castellani, D.; Pirola, G. M.; Rubilotta, E.; Gubbiotti, M.; Scarcella, S.; Maggi, M.; Gauhar, V.; Teoh, J. Y. -C.; Galosi, A. B
Ku70 senses cytosolic DNA and assembles a tumor-suppressive signalosome.
The innate immune response contributes to the development or attenuation of acute and chronic diseases, including cancer. Microbial DNA and mislocalized DNA from damaged host cells can activate different host responses that shape disease outcomes. Here, we show that mice and humans lacking a single allele of the DNA repair protein Ku70 had increased susceptibility to the development of intestinal cancer. Mechanistically, Ku70 translocates from the nucleus into the cytoplasm where it binds to cytosolic DNA and interacts with the GTPase Ras and the kinase Raf, forming a tripartite protein complex and docking at Rab5+Rab7+ early-late endosomes. This Ku70-Ras-Raf signalosome activates the MEK-ERK pathways, leading to impaired activation of cell cycle proteins Cdc25A and CDK1, reducing cell proliferation and tumorigenesis. We also identified the domains of Ku70, Ras, and Raf involved in activating the Ku70 signaling pathway. Therapeutics targeting components of the Ku70 signalosome could improve the treatment outcomes in cancer
EXACT RUN LENGTH DISTRIBUTION OF THE DOUBLE SAMPLING X CHART WITH ESTIMATED PROCESS PARAMETERS
Since the run length distribution is generally highly skewed, a significant concern about focusing too much on the average run length (ARL) criterion is that we may miss some crucial information about a control chart’s performance. Thus it is important to investigate the entire run length distribution of a control chart for an in-depth understanding before implementing the chart in process monitoring. In this paper, the percentiles of the run length distribution for the double sampling (DS) X chart with estimated process parameters are computed. Knowledge of the percentiles of the run length distribution provides a more comprehensive understanding of the expected behaviour of the run length. This additional information includes the early false alarm, the skewness of the run length distribution, and the median run length (MRL). A comparison of the run length distribution between the optimal ARL-based and MRL-based DS X chart with estimated process parameters is presented in this paper. Examples of applications are given to aid practitioners to select the best design scheme of the DS X chart with estimated process parameters, based on their specific purpose
EXACT RUN LENGTH DISTRIBUTION OF THE DOUBLE SAMPLING X CHART WITH ESTIMATED PROCESS PARAMETERS
Since the run length distribution is generally highly skewed, a significant concern about focusing too much on the average run length (ARL) criterion is that we may miss some crucial information about a control chart’s performance. Thus it is important to investigate the entire run length distribution of a control chart for an in-depth understanding before implementing the chart in process monitoring. In this paper, the percentiles of the run length distribution for the double sampling (DS) X chart with estimated process parameters are computed. Knowledge of the percentiles of the run length distribution provides a more comprehensive understanding of the expected behaviour of the run length. This additional information includes the early false alarm, the skewness of the run length distribution, and the median run length (MRL). A comparison of the run length distribution between the optimal ARL-based and MRL-based DS X chart with estimated process parameters is presented in this paper. Examples of applications are given to aid practitioners to select the best design scheme of the DS X chart with estimated process parameters, based on their specific purpose
Nanocasting Synthesis of Ultrafine WO3 Nanoparticles for Gas Sensing Applications
Ultrafine WO3 nanoparticles were synthesized by nanocasting route, using mesoporous SiO2 as a template. BET measurements showed a specific surface area of 700 m 2/gr for synthesized SiO2, while after impregnation and template removal, this area was reduced to 43 m 2/gr for WO3 nanoparticles. HRTEM results showed single crystalline nanoparticles with average particle size of about 5 nm possessing a monoclinic structure, which is the favorite crystal structure for gas sensing applications. Gas sensor was fabricated by deposition of WO3 nanoparticles between electrodes via low frequency AC electrophoretic deposition. Gas sensing measurements showed that this material has a high sensitivity to very low concentrations of NO2 at 250°C and 300°C
TOpic: rare and special cases, the real "Strange cases"
Introduction: The bladder hernia represents approximately 1-3% of
all inguinal hernias, where patients aged more than 50 years have a
higher incidence (10%). Many factors contribute to the development of a bladder hernia,
including the presence of a urinary outlet obstruction causing chronic
bladder distention, the loss of bladder tone, pericystitis, the perivesical
bladder fat protrusion and the obesity
Global aviation contrail climate effects from 2019 to 2021
The global annual mean radiative forcing (RF) attributable to contrail cirrus is comparable to the RF from aviation’s cumulative CO2 emissions. Here, we simulate the global contrail climate forcing for 2019–2021 using reanalysis weather data and improved engine emission estimates along actual flight trajectories derived from Automatic Dependent Surveillance–Broadcast telemetry. Our 2019 global annual mean contrail net RF (62.1 mW m-2) is 44 % lower than current best estimates for 2018 (111 [33, 189] mW m-2). Regionally, the contrail net RF is largest over Europe (876 mW m-2) and the US (414 mW m-2), while the RF over East Asia (64 mW m-2) and China (62 mW m-2) are close to the global mean value because fewer flights in these regions form contrails as a result of lower cruise altitudes and limited ice supersaturated regions in the subtropics due to the Hadley Circulation. Globally, COVID-19 reduced the flight distance flown and contrail net RF in 2020 (-43 % and -56 % respectively vs. 2019) and 2021 (-31 % and -49 % respectively) with significant regional variation. Around 14 % of all flights form a contrail with a net warming effect, yet only 2 % of all flights account for 80 % of the annual contrail energy forcing. The spatiotemporal patterns of the most strongly warming and cooling contrail segments can be attributed to flight scheduling factors, aircraft–engine particle number emissions, tropopause height, background cloud and radiation fields, and albedo. Our contrail RF estimates are most sensitive to corrections applied to the global humidity fields, followed by assumptions on the aircraft-engine particle number emissions, and is least sensitive to radiative heating effects on the contrail plume and contrail-contrail overlapping. Accounting for the sensitivity analysis, we estimate a 2019 global contrail net RF of 62.1 [34.8, 74.8] mW m-2
- …