3,147 research outputs found
Clinician-Patient Small Talk: Comparing Competent Students and Expert Dentists in a Standardized Patient Encounter
poster abstractObjectives:
To establish whether the frequency of non-diagnostic, non-management exchanges
between clinicians and patient (socioemotional communication, SC) during the consultation differed between senior dental students and dentists, controlling for clinically driven exchanges of information.
Methods:
Dentists and students were recorded while undergoing a consultation with a live
standardized patient, and subsequently interviewed by investigators; their shared interpretation of cognitive strategies were recorded and compared for differences in the presence of SC using a χ2 test; first consultation occurrence of SC using log-rank tests; and number of times that SC occurred using mixed-model ANOVA.
Results:
Most clinicians engaged in SC throughout the consultation with a few exceptions.
Statistical analyses produced non-significant differences for overall SC presence (p=0.62), time to first instance of SC from overall start of the consultation (p=0.73), and time after first intraoral examination had taken place (p=0.76). Non-significant differences were also recorded for the summary of time intervals when SC occurred at time from overall start of the consultation (p=0.89), and time after first intra-oral examination had taken place (p=0.12).
Conclusions:
SC occurred in most clinicians. Patterns depicted this interaction occurring throughout
the consultation, not concentrated at the beginning or end. SC did not appear to differ between experts and students in terms of prevalence, frequency, or timing. Future research should examine the detailed association between SC and diagnostic thinking processes, to further delineate their relationship and characterize possible pedagogical applications
Multiform antimicrobial resistance from a metabolic mutation
A critical challenge for microbiology and medicine is how to cure infections by bacteria that survive antibiotic treatment by persistence or tolerance. Seeking mechanisms behind such high survival, we developed a forward-genetic method for efficient isolation of high24 survival mutants in any culturable bacterial species. We found that perturbation of an essential biosynthetic pathway (arginine biosynthesis) in a mycobacterium generated three distinct forms of resistance to diverse antibiotics, each mediated by induction of WhiB7— high persistence and tolerance to kanamycin, high survival upon exposure to rifampicin, and MIC-shifted resistance to clarithromycin. As little as one base change in a gene encoding a metabolic pathway component conferred multiple forms of resistance to multiple antibiotics with different targets. This extraordinary resilience may help explain how sub31 sterilizing exposure to one antibiotic in a regimen can induce resistance to others and invites development of drugs targeting the mediator of multiform resistance, WhiB7
Development of tuneable Fabry-Perot sensors for parallelised photoacoustic signal acquisition
Fabry-Pérot (FP) sensors have enabled high resolution 3D photoacoustic (PA) imaging in backward mode. However, raster-scanning of the interrogation laser beam across the sensor can result in slow 3D image acquisition. To overcome this limitation, parallelized PA signal acquisition can be used for which FP sensors with uniform optical thickness are required. In this work, the optical thickness is tuned a) irreversibly through the use of a photopolymer host matrix and b) actively using embedded electro-optic (EO) chromophores. Polymer spacers (5 μm) were deposited using spin coating and sandwiched between two dielectric mirrors and transparent ITO electrodes. The employed polymer guest-host system consists of an EO chromophore (2-methyl-4-nitroaniline) and poly(vinyl cinnamate). EO tuneability was induced using contact poling and a tuneability of 68 pm was demonstrated. The optical thickness was homogenised by raster scanning a UV beam whilst varying the exposure time across a 4 mm2 detection aperture
Positronic lithium, an electronically stable Li-e ground state
Calculations of the positron-Li system were performed using the Stochastic
Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0
ground state. Unlike previous calculations of this system, the system was found
to be stable against dissociation into the Ps + Li channel with a binding
energy of 0.00217 Hartree and is therefore electronically stable. This is the
first instance of a rigorous calculation predicting that it is possible to
combine a positron with a neutral atom and form an electronically stable bound
state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let
Grassmann-Gaussian integrals and generalized star products
In quantum scattering on networks there is a non-linear composition rule for
on-shell scattering matrices which serves as a replacement for the
multiplicative rule of transfer matrices valid in other physical contexts. In
this article, we show how this composition rule is obtained using Berezin
integration theory with Grassmann variables.Comment: 14 pages, 2 figures. In memory of Al.B. Zamolodichiko
NASA Lunar Regolith Simulant Program
Lunar regolith simulant production is absolutely critical to returning man to the Moon. Regolith simulant is used to test hardware exposed to the lunar surface environment, simulate health risks to astronauts, practice in situ resource utilization (ISRU) techniques, and evaluate dust mitigation strategies. Lunar regolith simulant design, production process, and management is a cooperative venture between members of the NASA Marshall Space Flight Center (MSFC) and the U.S. Geological Survey (USGS). The MSFC simulant team is a satellite of the Dust group based at Glenn Research Center. The goals of the cooperative group are to (1) reproduce characteristics of lunar regolith using simulants, (2) produce simulants as cheaply as possible, (3) produce simulants in the amount needed, and (4) produce simulants to meet users? schedules
A temperature and magnetic field dependence Mössbauer study of ɛ-Fe2O3
ɛ-Fe2O3 was synthesized as nanoparticles by a pre-vacuum heat treatment of yttrium iron garnet (Y3Fe5O12) in a silica matrix at 300-C followed by sintering in air at 1,000-C for up to 10 h. It displays complex magnetic properties that are characterized by two transitions, one at 480 K from a paramagnet (P) to canted antiferromagnet (CAF1) and the second at ca. 120 K from the canted antiferromagnet (CAF1) to another canted antiferromagnet (CAF2). CAF2 has a smaller resultant magnetic moment (i.e. smaller canting angle) than CAF1. Analysis of the zero-field Mossbauer spectra at different temperatures shows an associated discontinuity of the hyperfine field around 120 K. In an applied field, the different magnetic sublattices were identified and the directions of their moments were assigned. The moments of the two sublattices are antiparallel and collinear at 160 K but are at right angle to each other at 4.2 K
- …