31,141 research outputs found

    Adaptive reflection and focusing of Bose-Einstein condensates

    Full text link
    We report adjustable magnetic `bouncing' and focusing of a dilute 87^{87}Rb Bose gas. Both the condensate production and manipulation are realised using a particularly straight-forward apparatus. The bouncing region is comprised of approximately concentric ellipsoidal magnetic equipotentials with a centre that can be adjusted vertically. We extend, and discuss the limitations of, simple Thomas-Fermi and Monte-Carlo theoretical models for the bouncing, which at present find close agreement with the condensate's evolution. Very strong focusing has been inferred and the observation of atomic matter-wave diffraction should be possible. Prospects look bright for applications in matter-wave atom-optics, due to the very smooth nature of the mirror

    Primordial magnetic fields constrained by CMB anisotropies and dynamo cosmology

    Full text link
    Magneto-curvature stresses could deform magnetic field lines and this would give rise to back reaction and restoring magnetic stresses [Tsagas, PRL (2001)]. Barrow et al [PRD (2008)] have shown in Friedman universe the expansion to be slow down in spatial section of negative Riemann curvatures. From Chicone et al [CMP (1997)] paper, proved that fast dynamos in compact 2D manifold implies negatively constant Riemannian curvature, here one applies the Barrow-Tsagas ideas to cosmic dynamos. Fast dynamo covariant stretching of Riemann slices of cosmic Lobachevsky plane is given. Inclusion of advection term on dynamo equations [Clarkson et al, MNRAS (2005)] is considered. In absence of advection a fast dynamo is also obtained. Viscous and restoring forces on stretching particles decrease, as magnetic rates increase. From COBE data (δBB≈10−5\frac{{\delta}B}{B}\approx{10^{-5}}), one computes stretching δVyVy=1.5δBB≈1.5×10−5\frac{{\delta}V^{y}}{V^{y}}=1.5\frac{{\delta}B}{B}\approx{1.5{\times}10^{-5}}. Zeldovich et al has computed the maximum magnetic growth rate as γmax≈8.0×10−1t−1{\gamma}_{max}\approx{8.0{\times}10^{-1}t^{-1}}. From COBE data one computes a lower growth rate for the magnetic field as γCOBE≈6.0×10−6t−1{\gamma}_{COBE}\approx{6.0{\times}10^{-6}t^{-1}}, well-within Zeldovich et al estimate. Instead of the Harrison value B≈t4/3B\approx{t^{{4/3}}} one obtains the lower primordial field B≈10−6tB\approx{10^{-6}t} which yields the B≈10−6GB\approx{10^{-6}G} at the 1s1s Big Bang time.Comment: Dept of theoretical physics-UERJ-Brasi

    A large magnetic storage ring for Bose-Einstein condensates

    Full text link
    Cold atomic clouds and Bose-Einstein condensates have been stored in a 10cm diameter vertically-oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2m, with a heating rate of less than 50nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.Comment: 4 pages, 5 figure

    Investigation of double beta decay with the NEMO-3 detector

    Full text link
    The double beta decay experiment NEMO~3 has been taking data since February 2003. The aim of this experiment is to search for neutrinoless (0νββ0\nu\beta\beta) decay and investigate two neutrino double beta decay in seven different isotopically enriched samples (100^{100}Mo, 82^{82}Se, 48^{48}Ca, 96^{96}Zr, 116^{116}Cd, 130^{130}Te and 150^{150}Nd). After analysis of the data corresponding to 3.75 y, no evidence for 0νββ0\nu\beta\beta decay in the 100^{100}Mo and 82^{82}Se samples was found. The half-life limits at the 90% C.L. are 1.1⋅10241.1\cdot 10^{24} y and 3.6⋅10233.6\cdot 10^{23} y, respectively. Additionally for 0νββ0\nu\beta\beta decay the following limits at the 90% C.L. were obtained, >1.3⋅1022> 1.3 \cdot 10^{22} y for 48^{48}Ca, >9.2⋅1021> 9.2 \cdot 10^{21} y for 96^{96}Zr and >1.8⋅1022> 1.8 \cdot 10^{22} y for 150^{150}Nd. The 2νββ2\nu\beta\beta decay half-life values were precisely measured for all investigated isotopes.Comment: 12 pages, 4 figures, 5 tables; talk at conference on "Fundamental Interactions Physics" (ITEP, Moscow, November 23-27, 2009

    Enzymatic functionalization of carbon-hydrogen bonds

    Get PDF
    The development of new catalytic methods to functionalize carbon–hydrogen (C–H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C–H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C–H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C–H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts (110 references)

    Predicting the outcome of renal transplantation

    Get PDF
    ObjectiveRenal transplantation has dramatically improved the survival rate of hemodialysis patients. However, with a growing proportion of marginal organs and improved immunosuppression, it is necessary to verify that the established allocation system, mostly based on human leukocyte antigen matching, still meets today's needs. The authors turn to machine-learning techniques to predict, from donor-recipient data, the estimated glomerular filtration rate (eGFR) of the recipient 1 year after transplantation.DesignThe patient's eGFR was predicted using donor-recipient characteristics available at the time of transplantation. Donors' data were obtained from Eurotransplant's database, while recipients' details were retrieved from Charite Campus Virchow-Klinikum's database. A total of 707 renal transplantations from cadaveric donors were included.MeasurementsTwo separate datasets were created, taking features with <10% missing values for one and <50% missing values for the other. Four established regressors were run on both datasets, with and without feature selection.ResultsThe authors obtained a Pearson correlation coefficient between predicted and real eGFR (COR) of 0.48. The best model for the dataset was a Gaussian support vector machine with recursive feature elimination on the more inclusive dataset. All results are available at http://transplant.molgen.mpg.de/.LimitationsFor now, missing values in the data must be predicted and filled in. The performance is not as high as hoped, but the dataset seems to be the main cause.ConclusionsPredicting the outcome is possible with the dataset at hand (COR=0.48). Valuable features include age and creatinine levels of the donor, as well as sex and weight of the recipient

    Antarctic Ocean polynyas

    Get PDF
    The spatial and temporal variability of sea ice concentrations derived from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures are presented. Emphasis is on the continental shelf region of the Ross Sea during 1984, when supporting data were obtained from oceanographic stations and moored instruments. The effects of the large spring polynya in the Ross Sea on summer insolation, surface heat layer storage, and late autumn ice formation are described

    Radiative and Collisional Energy Loss, and Photon-Tagged Jets at RHIC

    Full text link
    The suppression of single jets at high transverse momenta in a quark-gluon plasma is studied at RHIC energies, and the additional information provided by a photon tag is included. The energy loss of hard jets traversing through the medium is evaluated in the AMY formalism, by consistently taking into account the contributions from radiative events and from elastic collisions at leading order in the coupling. The strongly-interacting medium in these collisions is modelled with (3+1)-dimensional ideal relativistic hydrodynamics. Putting these ingredients together with a complete set of photon-production processes, we present a calculation of the nuclear modification of single jets and photon-tagged jets at RHIC.Comment: 4 pages, 4 figures, contributed to the 3rd International Conference on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), typos corrected, published versio

    Measurement of temperature profiles in hot gases by emission-absorption spectroscopy Final report

    Get PDF
    Measurement of spectral radiances and absorptances in hot gase
    • …
    corecore