The development of new catalytic methods to functionalize carbon–hydrogen (C–H) bonds
continues to progress at a rapid pace due to the significant economic and environmental benefits
of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and
stereoselective C–H bond functionalization using transformations ranging from hydroxylation to
hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to
analogous chemical processes has led to their increased use as biocatalysts in preparative and
industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically
optimized via directed evolution for a particular application and can be expressed in vivo to
augment the biosynthetic capability of living organisms. While a variety of technical challenges
must still be overcome for practical application of many enzymes for C–H bond functionalization,
continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved
synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the
most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C–H bonds, the
application and evolution of these enzymes for chemical synthesis, and a number of potential
biosynthetic capabilities uniquely enabled by these powerful catalysts (110 references)