368 research outputs found
Rotating Radio Transients and Their Place Among Pulsars
Six years ago, the discovery of Rotating Radio Transients (RRATs) marked what appeared to be a new type of sparsely-emitting pulsar. Since 2006, more than 70 of these objects have been discovered in single-pulse searches of archival and new surveys. With a continual inflow of new information about the RRAT population in the form of new discoveries, multi-frequency follow ups, coherent timing solutions, and pulse rate statistics, a view is beginning to form of the place in the pulsar population RRATs hold. Here we review the properties of neutron stars discovered through single pulse searches. We first seek to clarify the definition of the term RRAT, emphasising that "the RRAT population" encompasses several phenomenologies. A large subset of RRATs appears to represent the tail of an extended distribution of pulsar nulling fractions and activity cycles; these objects present several key open questions remaining in this field
A study of multifrequency polarization pulse profiles of millisecond pulsars
We present high signal-to-noise ratio, multifrequency polarization pulse profiles for 24 millisecond pulsars that are being observed as part of the Parkes Pulsar Timing Array project. The pulsars are observed in three bands, centred close to 730, 1400 and 3100 MHz, using a dual-band 10 cm/50 cm receiver and the central beam of the 20-cm multibeam receiver. Observations spanning approximately six years have been carefully calibrated and summed to produce high S/N profiles. This allows us to study the individual profile components and in particular how they evolve with frequency. We also identify previously undetected profile features. For many pulsars we show that pulsed emission extends across almost the entire pulse profile. The pulse component widths and component separations follow a complex evolution with frequency; in some cases these parameters increase and in other cases they decrease with increasing frequency. The evolution with frequency of the polarization properties of the profile is also non-trivial. We provide evidence that the pre- and post-cursors generally have higher fractional linear polarization than the main pulse. We have obtained the spectral index and rotation measure for each pulsar by fitting across all three observing bands. For the majority of pulsars, the spectra follow a single power-law and the position angles follow a λ^2 relation, as expected. However, clear deviations are seen for some pulsars. We also present phase-resolved measurements of the spectral index, fractional linear polarization and rotation measure. All these properties are shown to vary systematically over the pulse profile
Realfast: Real-Time, Commensal Fast Transient Surveys with the Very Large Array
Radio interferometers have the ability to precisely localize and better
characterize the properties of sources. This ability is having a powerful
impact on the study of fast radio transients, where a few milliseconds of data
is enough to pinpoint a source at cosmological distances. However, recording
interferometric data at millisecond cadence produces a terabyte-per-hour data
stream that strains networks, computing systems, and archives. This challenge
mirrors that of other domains of science, where the science scope is limited by
the computational architecture as much as the physical processes at play. Here,
we present a solution to this problem in the context of radio transients:
realfast, a commensal, fast transient search system at the Jansky Very Large
Array. Realfast uses a novel architecture to distribute fast-sampled
interferometric data to a 32-node, 64-GPU cluster for real-time imaging and
transient detection. By detecting transients in situ, we can trigger the
recording of data for those rare, brief instants when the event occurs and
reduce the recorded data volume by a factor of 1000. This makes it possible to
commensally search a data stream that would otherwise be impossible to record.
This system will search for millisecond transients in more than 1000 hours of
data per year, potentially localizing several Fast Radio Bursts, pulsars, and
other sources of impulsive radio emission. We describe the science scope for
realfast, the system design, expected outcomes, and ways real-time analysis can
help in other fields of astrophysics.Comment: Accepted to ApJS Special Issue on Data; 11 pages, 4 figure
The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of AGWB \u3c 1.45 × 10−15 at a frequency of f = 1 yr−1 for a fiducial f−2/3 power-law spectrum and with interpulsar correlations modeled. This is a factor of ~2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH–galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of Gμ \u3c 5.3 × 10−11—a factor of ~2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is ΩGWB(f) h2 \u3c 3.4 × 10−10
The High Time Resolution Universe Survey - V: Single-pulse energetics and modulation properties of 315 pulsars
We report on the pulse-to-pulse energy distributions and phase-resolved
modulation properties for catalogued pulsars in the southern High Time
Resolution Universe intermediate-latitude survey. We selected the 315 pulsars
detected in a single-pulse search of this survey, allowing a large sample
unbiased regarding any rotational parameters of neutron stars. We found that
the energy distribution of many pulsars is well-described by a log-normal
distribution, with few deviating from a small range in log-normal scale and
location parameters. Some pulsars exhibited multiple energy states
corresponding to mode changes, and implying that some observed "nulling" may
actually be a mode-change effect. PSRJ1900-2600 was found to emit weakly in its
previously-identified "null" state. We found evidence for another state-change
effect in two pulsars, which show bimodality in their nulling time scales; that
is, they switch between a continuous-emission state and a single-pulse-emitting
state. Large modulation occurs in many pulsars across the full integrated
profile, with increased sporadic bursts at leading and trailing sub-beam edges.
Some of these high-energy outbursts may indicate the presence of "giant pulse"
phenomena. We found no correlation with modulation and pulsar period, age, or
other parameters. Finally, the deviation of integrated pulse energy from its
average value was generally quite small, despite the significant phase-resolved
modulation in some pulsars; we interpret this as tenuous evidence of energy
regulation between distinct pulsar sub-beams.Comment: Before full MNRAS publication, supplementary material is available
temporarily at http://dl.dropbox.com/u/22076931/supplementary_material.pd
The High Time Resolution Universe Pulsar Survey I: System configuration and initial discoveries
We have embarked on a survey for pulsars and fast transients using the
13-beam Multibeam receiver on the Parkes radio telescope. Installation of a
digital backend allows us to record 400 MHz of bandwidth for each beam, split
into 1024 channels and sampled every 64 us. Limits of the receiver package
restrict us to a 340 MHz observing band centred at 1352 MHz. The factor of
eight improvement in frequency resolution over previous multibeam surveys
allows us to probe deeper into the Galactic plane for short duration signals
such as the pulses from millisecond pulsars. We plan to survey the entire
southern sky in 42641 pointings, split into low, mid and high Galactic latitude
regions, with integration times of 4200, 540 and 270 s respectively.
Simulations suggest that we will discover 400 pulsars, of which 75 will be
millisecond pulsars. With ~30% of the mid-latitude survey complete, we have
re-detected 223 previously known pulsars and discovered 27 pulsars, 5 of which
are millisecond pulsars. The newly discovered millisecond pulsars tend to have
larger dispersion measures than those discovered in previous surveys, as
expected from the improved time and frequency resolution of our instrument.Comment: Updated author list. 10 pages, 7 figures. For publication in MNRA
- …