65 research outputs found

    Shape oscillations in non-degenerate Bose gases - transition from the collisionless to the hydrodynamic regime

    Get PDF
    We investigate collective oscillations of non-degenerate clouds of Rb-87 atoms as a function of density in an elongated magnetic trap. For the low-lying M=0 monopole-quadrupole shape oscillation we measure the oscillation frequencies and damping rates. At the highest densities the mean-free-path is smaller than the axial dimension of the sample, which corresponds to collisionally hydrodynamic conditions. This allows us to cover the cross-over from the collisionless to the hydrodynamic regime. The experimental results show good agreement with theory. We also analyze the influence of trap anharmonicities on the oscillations in relation to observed temperature dependencies of the dipole and quadrupole oscillation frequencies. We present convenient expressions to quantify these effects.Comment: 10 pages, 5 figure

    A laser based accelerator for ultracold atoms

    Full text link
    We present first results on our implementation of a laser based accelerator for ultracold atoms. Atoms cooled to a temperature of 420 nK are confined and accelerated by means of laser tweezer beams and the atomic scattering is directly observed in laser absorption imaging. The optical collider has been characterized using Rb87 atoms in the |F=2,mF=2> state, but the scheme is not restricted to atoms in any particular magnetic substates and can readily be extended to other atomic species as well.Comment: (c) 2012 The Optical Society, 3 pages, 4 figures, 1 movie lin

    Biomarkers as Proxies to Analyse Land-Use History in Northern Jordan

    Get PDF
    In the semi-arid 'Decapolis region' in northern Jordan, due severe land degradation in the past, 'barren' and 'impoverished' landscapes can be found today. It is widely believed that land degradation in these regions was caused by ancient land use, e.g. overgrazing due to ‘Arab mismanagement'. However, the connection of degradation with land use is far from certain. The 'Decapolis region' is located in an approximately 100 km wide transition zone from Mediterranean to steppe and desert climate. Therefore, the landscape in this region is highly sensitive to climate variations. A major sedimentation phase in the late 6th century AD appears to represent a significant climate change towards more aridity, and might be connected with a cluster of heavy rainfall events in northern Jordan. In fact, more recent studies have found that periods of predominantly pastoral land use in northern Jordan were connected with natural reforestation. Since a dating of sedimentation alone does not deliver clues about the precise reason of deposition, a multidisciplinary team is analyzing the land-use history in the ‘Decapolis’ region. This presentation focusses on ongoing biomarker analyses. Samples were selected considering geoarchaeological data, including phosphorus concentrations, archaeological data, including distribution of potsherds and other fragments on ancient fields and data of further disciplines. Vegetation changes are investigated by analyses of n-alkanes and terpenoids. Manuring with faeces is analysed by specific steroids that are indicative for faeces deposition. Preliminary results showed a high input of omnivorous (pigs, humans) faeces in some areas. Manuring with faeces of herbivores seemed to be less important

    Observation of Quantum Effects in sub Kelvin Cold Reactions

    Full text link
    There has been a long-standing quest to observe chemical reactions at low temperatures where reaction rates and pathways are governed by quantum mechanical effects. So far this field of Quantum Chemistry has been dominated by theory. The difficulty has been to realize in the laboratory low enough collisional velocities between neutral reactants, so that the quantum wave nature could be observed. We report here the first realization of merged neutral supersonic beams, and the observation of clear quantum effects in the resulting reactions. We observe orbiting resonances in the Penning ionization reaction of argon and molecular hydrogen with metastable helium leading to a sharp increase in the absolute reaction rate in the energy range corresponding to a few degrees kelvin down to 10 mK. Our method is widely applicable to many canonical chemical reactions, and will enable a breakthrough in the experimental study of Quantum Chemistry

    Hydrodynamic behavior in expanding thermal clouds of Rb-87

    Full text link
    We study hydrodynamic behavior in expanding thermal clouds of Rb-87 released from an elongated trap. At our highest densities the mean free path is smaller than the radial size of the cloud. After release the clouds expand anisotropically. The cloud temperature drops by as much as 30%. This is attributed to isentropic cooling during the early stages of the expansion. We present an analytical model to describe the expansion and to estimate the cooling. Important consequences for time-of-flight thermometry are discussed.Comment: 7 pages with 2 figure

    A Quantum Scattering Interferometer

    Get PDF
    The collision of two ultra-cold atoms results in a quantum-mechanical superposition of two outcomes: each atom continues without scattering and each atom scatters as a spherically outgoing wave with an s-wave phase shift. The magnitude of the s-wave phase shift depends very sensitively on the interaction between the atoms. Quantum scattering and the underlying phase shifts are vitally important in many areas of contemporary atomic physics, including Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic clocks, and magnetically-tuned Feshbach resonances. Precise measurements of quantum scattering phase shifts have not been possible until now because, in scattering experiments, the number of scattered atoms depends on the s-wave phase shifts as well as the atomic density, which cannot be measured precisely. Here we demonstrate a fundamentally new type of scattering experiment that interferometrically detects the quantum scattering phase shifts of individual atoms. By performing an atomic clock measurement using only the scattered part of each atom, we directly and precisely measure the difference of the s-wave phase shifts for the two clock states in a density independent manner. Our method will give the most direct and precise measurements of ultracold atom-atom interactions and will place stringent limits on the time variations of fundamental constants.Comment: Corrected formatting and typo
    corecore