181 research outputs found

    Artificial Neural Network to predict mean monthly total ozone in Arosa, Switzerland

    Full text link
    Present study deals with the mean monthly total ozone time series over Arosa, Switzerland. The study period is 1932-1971. First of all, the total ozone time series has been identified as a complex system and then Artificial Neural Networks models in the form of Multilayer Perceptron with back propagation learning have been developed. The models are Single-hidden-layer and Two-hidden-layer Perceptrons with sigmoid activation function. After sequential learning with learning rate 0.9 the peak total ozone period (February-May) concentrations of mean monthly total ozone have been predicted by the two neural net models. After training and validation, both of the models are found skillful. But, Two-hidden-layer Perceptron is found to be more adroit in predicting the mean monthly total ozone concentrations over the aforesaid period.Comment: 22 pages, 14 figure

    Transversals to Line Segments in Three-Dimensional Space

    Get PDF
    We completely describe the structure of the connected components of transversals to a collection of n line segments in R3. We show that n \u3e 3 arbitrary line segments in R3 admit 0, 1, . . . , n or infinitely many line transversals. In the latter case, the transversals form up to n connected components

    The unidentified eruption of 1809: A climatic cold case

    Get PDF
    The "1809 eruption"is one of the most recent unidentified volcanic eruptions with a global climate impact. Even though the eruption ranks as the third largest since 1500 with a sulfur emission strength estimated to be 2 times that of the 1991 eruption of Pinatubo, not much is known of it from historic sources. Based on a compilation of instrumental and reconstructed temperature time series, we show here that tropical temperatures show a significant drop in response to the ~1809 eruption that is similar to that produced by the Mt. Tambora eruption in 1815, while the response of Northern Hemisphere (NH) boreal summer temperature is spatially heterogeneous. We test the sensitivity of the climate response simulated by the MPI Earth system model to a range of volcanic forcing estimates constructed using estimated volcanic stratospheric sulfur injections (VSSIs) and uncertainties from ice-core records. Three of the forcing reconstructions represent a tropical eruption with an approximately symmetric hemispheric aerosol spread but different forcing magnitudes, while a fourth reflects a hemispherically asymmetric scenario without volcanic forcing in the NH extratropics. Observed and reconstructed post-volcanic surface NH summer temperature anomalies lie within the range of all the scenario simulations. Therefore, assuming the model climate sensitivity is correct, the VSSI estimate is accurate within the uncertainty bounds. Comparison of observed and simulated tropical temperature anomalies suggests that the most likely VSSI for the 1809 eruption would be somewhere between 12 and 19ĝ€¯Tg of sulfur. Model results show that NH large-scale climate modes are sensitive to both volcanic forcing strength and its spatial structure. While spatial correlations between the N-TREND NH temperature reconstruction and the model simulations are weak in terms of the ensemble-mean model results, individual model simulations show good correlation over North America and Europe, suggesting the spatial heterogeneity of the 1810 cooling could be due to internal climate variability

    Los reanálisis arrojan luz sobre el desastre de los aludes de 1916

    Get PDF
    Uno de los peores desastres meteorológicos de la historia tuvo lugar en el sureste de los Alpes durante el infame invierno de 1916/17. Los aludes ocurridos después de un episodio de grandes nevadas mataron a miles de soldados y civiles. Las técnicas numéricas actuales abren nuevas posibilidades para estudiar este episodio histórico. La combinación de las mediciones históricas con los reanálisis y la regionalización dinámica (dinamical downscaling) hace posible reconstruir el tiempo atmosférico descendiendo incluso hasta la escala local y, por lo tanto, a la escala captada por documentos históricos de los impactos meteorológicos

    The CLIVAR C20C Project: Which components of the Asian-Australian monsoon circulation variations are forced and reproducible?

    Get PDF
    A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950-1999 is studied to identify and understand which components of the Asian-Australian monsoon (A-AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A-AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A-AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June-July-August SSTs in the equatorial eastern Pacific in recent decades. Among the A-AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A-AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.Submitted3.7. Dinamica del clima e dell'oceanoJCR Journalope

    A Framework to Support Interdisciplinary Engagement with Learning Analytics

    Get PDF
    Learning analytics can provide an excellent opportunity for instructors to get an in-depth understanding of students’ learning experiences in a course. However, certain technological challenges, namely limited availability of learning analytics data because of learning management system restrictions, can make accessing this data seem impossible at some institutions. Furthermore, even in cases where instructors have access to a range of student data, there may not be organized efforts to support students across various courses and university experiences. In the current chapter, the authors discuss the issue of learning analytics access and ways to leverage learning analytics data between instructors, and in some cases administrators, to create interdisciplinary opportunities for comprehensive student support. The authors consider the implications of these interactions for students, instructors, and administrators. Additionally, the authors focus on some of the technological infrastructure issues involved with accessing learning analytics and discuss the opportunities available for faculty and staff to take a multi-pronged approach to addressing overall student success.https://scholarworks.wm.edu/educationbookchapters/1045/thumbnail.jp

    Multi-View Matching Tensors from Lines for General Camera Models

    Get PDF
    International audienceGeneral camera models relax the constraint on central projection and characterize cameras as mappings between each pixel and the corresponding projection rays. This allows to describe most cameras types, including classical pinhole cameras, cameras with various optical distortions, catadioptric cameras and other acquisition devices. We deal with the structure from motion problem for such general models. We first consider an hierarchy of general cameras first introduced in [28] where the cameras are described according to the number of points and lines that have a non-empty intersection with all the projection rays. Then we propose a study of the multi-view geometry of such cameras and a new formulation of multi-view matching tensors working for projection rays crossing the same 3D line, the counterpart of the fundamental matrices and the multifocal tensors of the standard perspective cameras. We also delineate a method to estimate such tensors and recover the motion between the views

    Unlocking pre-1850 instrumental meteorological records: a global inventory

    Get PDF
    A global inventory of early instrumental meteorological measurements is compiled. It comprises thousands of series, many of which have not been digitized, pointing to the potential of weather data rescue. Instrumental meteorological measurements from periods prior to the start of national weather services are designated “early instrumental data”. They have played an important role in climate research as they allow daily-to-decadal variability and changes of temperature, pressure, and precipitation, including extremes, to be addressed. Early instrumental data can also help place 21st century climatic changes into a historical context such as to define pre-industrial climate and its variability. Until recently, the focus was on long, high-quality series, while the large number of shorter series (which together also cover long periods) received little to no attention. The shift in climate and climate impact research from mean climate characteristics towards weather variability and extremes, as well as the success of historical reanalyses which make use of short series, generates a need for locating and exploring further early instrumental measurements. However, information on early instrumental series has never been electronically compiled on a global scale. Here we attempt a worldwide compilation of metadata on early instrumental meteorological records prior to 1850 (1890 for Africa and the Arctic). Our global inventory comprises information on several thousand records, about half of which have not yet been digitized (not even as monthly means), and only approximately 20% of which have made it to global repositories. The inventory will help to prioritize data rescue efforts and can be used to analyze the potential feasibility of historical weather data products. The inventory will be maintained as a living document and is a first, critical, step towards the systematic rescue and re-evaluation of these highly valuable early records. Additions to the inventory are welcomed
    corecore