55 research outputs found

    CAR-T cell. the long and winding road to solid tumors

    Get PDF
    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles

    Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque Vulnerability

    Get PDF
    Rationale: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of histone deacetylase 9 (HDAC9) in atherosclerosis and its clinical complications including stroke and myocardial infarction. Objective: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. Methods and Results: We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further employed two-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content whilst increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKKα and β resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting pro-inflammatory responses in macrophages. Transcriptional profiling using RNA-Seq revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKβ. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL-1β and IL-6. Conclusions: Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation

    Epidermal growth factor receptor as target for perioperative elimination of circulating colorectal cancer cells

    Get PDF
    Surgical resection of the tumor is the primary treatment of colorectal cancer patients. However, we previously demonstrated that abdominal surgery promotes the adherence of circulating tumor cells (CTC) in the liver and subsequent liver metastasis development. Importantly, preoperative treatment with specific tumor-targeting monoclonal antibodies (mAb) prevented surgery-induced liver metastasis development in rats. This study investigated whether the epidermal growth factor receptor (EGFR) represents a suitable target for preoperative antibody treatment of colorectal cancer patients undergoing surgery. The majority of patients with resectable colorectal liver metastases were shown to have EGFR + CTCs. Three different anti-EGFR mAbs (cetuximab, zalutumumab, and panitumumab) were equally efficient in the opsonization of tumor cell lines. Additionally, all three mAbs induced antibody-dependent cellular phagocytosis (ADCP) of tumor cells by macrophages at low antibody concentrations in vitro, independent of mutations in EGFR signaling pathways. The plasma of cetuximab-treated patients efficiently opsonized tumor cells ex vivo and induced phagocytosis. Furthermore, neither proliferation nor migration of epithelial cells was affected in vitro, supporting that wound healing will not be hampered by treatment with low anti-EGFR mAb concentrations. These data support the use of a low dose of anti-EGFR mAbs prior to resection of the tumor to eliminate CTCs without interfering with the healing of the anastomosis. Ultimately, this may reduce the risk of metastasis development, consequently improving long-term patient outcome significantly.Transplantation and autoimmunit

    Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis

    Get PDF
    Publisher Copyright: © 2021 The Author(s). Published by Oxford University Press on behalf of the European Society of Cardiology.Aims: Mental stress substantially contributes to the initiation and progression of human disease, including cardiovascular conditions. We aim to investigate the underlying mechanisms of these contributions since they remain largely unclear. Methods and results: Here, we show in humans and mice that leucocytes deplete rapidly from the blood after a single episode of acute mental stress. Using cell-tracking experiments in animal models of acute mental stress, we found that stress exposure leads to prompt uptake of inflammatory leucocytes from the blood to distinct tissues including heart, lung, skin, and, if present, atherosclerotic plaques. Mechanistically, we found that acute stress enhances leucocyte influx into mouse atherosclerotic plaques by modulating endothelial cells. Specifically, acute stress increases adhesion molecule expression and chemokine release through locally derived norepinephrine. Either chemical or surgical disruption of norepinephrine signalling diminished stress-induced leucocyte migration into mouse atherosclerotic plaques. Conclusion: Our data show that acute mental stress rapidly amplifies inflammatory leucocyte expansion inside mouse atherosclerotic lesions and promotes plaque vulnerability.publishersversionPeer reviewe

    Paracrine cyclooxygenase-2 activity by macrophages drives colorectal adenoma progression in the Apc Min/+ mouse model of intestinal tumorigenesis

    Get PDF
    Genetic deletion or pharmacological inhibition of cyclooxygenase (COX)-2 abrogates intestinal adenoma development at early stages of colorectal carcinogenesis. COX-2 is localised to stromal cells (predominantly macrophages) in human and mouse intestinal adenomas. Therefore, we tested the hypothesis that paracrine Cox-2-mediated signalling from macrophages drives adenoma growth and progression in vivo in the ApcMin/+ mouse model of intestinal tumorigenesis. Using a transgenic C57Bl/6 mouse model of Cox-2 over-expression driven by the chicken lysozyme locus (cLys-Cox-2), which directs integration site-independent, copy number-dependent transgene expression restricted to macrophages, we demonstrated that stromal macrophage Cox-2 in colorectal (but not small intestinal) adenomas from cLys-Cox-2 x ApcMin/+ mice was associated with significantly increased tumour size (P = 0.025) and multiplicity (P = 0.025), compared with control ApcMin/+ mice. Transgenic macrophage Cox-2 expression was associated with increased dysplasia, epithelial cell Cox-2 expression and submucosal tumour invasion, as well as increased nuclear β-catenin translocation in dysplastic epithelial cells. In vitro studies confirmed that paracrine macrophage Cox-2 signalling drives catenin-related transcription in intestinal epithelial cells. Paracrine macrophage Cox-2 activity drives growth and progression of ApcMin/+ mouse colonic adenomas, linked to increased epithelial cell β-catenin dysregulation. Stromal cell (macrophage) gene regulation and signalling represent valid targets for chemoprevention of colorectal cancer
    corecore