92 research outputs found

    Optimal Tax Progressivity in Unionised Labour Markets: Simulation Results for Germany

    Get PDF
    Abstract Changing the income tax progressivity in labour markets with collective wage bargaining generates a trade-off. On the one hand, higher progressivity distorts individual labour supply decisions at the hours-of-work margin, on the other hand, it reduces unemployment by exerting downward pressure on wages. This trade-off is quantitatively assessed using a numerical model for Germany. The model combines a microsimulation module, which captures the labour-supply decisions of approximately 4,600 individual households, and a macro (computable general equilibrium) module, which features collective wage bargaining and involuntary unemployment. In the simulations carried out using this model, the optimal degree of tax progressivity turns out to be higher than the one in the actual German tax schedule. The optimum is located at marginal tax rates that are 6 percentage points higher than the actual rates (combined with a transfer that balances the public budget). The welfare gain from such a reform is modest, however. It amounts to no more than two euros per person per month

    Do musculoskeletal ultrasound and magnetic resonance imaging identify synovitis and tenosynovitis at the same joints and tendons? A comparative study in early inflammatory arthritis and clinically suspect arthralgia

    Get PDF
    Objective: Ultrasound (US) and magnetic resonance imaging (MRI) are recommended in the diagnostic process of rheumatoid arthritis. Research on its comparability in early disease phases is scarce. Therefore, we compared synovitis and tenosynovitis detected by US and MRI on joint/tendon level. Methods: Eight hundred forty joints and 700 tendons of 70 consecutive patients, presenting with inflammatory arthritis or clinically suspect arthralgia, underwent US and MRI of MCP (2–5), wrist and MTP (1–5) joints at the same day. Greyscale (GS) and power Doppler (PD) synovitis were scored according to the modified Szkudlarek method (combining synovial effusion and hypertrophy) and the recently published EULAR-OMERACT method (synovial hypertrophy regardless of the presence of effusion) on static images. US-detected tenosynovitis was scored according to the OMERACT. MRI scans were scored according to the RAMRIS. Test characteristics were calculated on joint/tendon level with MRI as reference. Cut-off for US scores were ≥ 1 and ≥ 2 and for MRI ≥ 1. Results: Compared to MRI, GS synovitis according to EULAR-OMERACT (cut-off ≥ 1) had a sensitivity ranging from 29 to 75% for the different joint locations; specificity ranged from 80 to 98%. For the modified Szkudlarek method, the sensitivity was 68–91% and specificity 52–71%. PD synovitis had a sensitivity of 30–54% and specificity 97–99% compared to MRI. The sensitivity to detect GS tenosynovitis was 50–78% and the specificity 80–94%. For PD tenosynovitis, the sensitivity was 19–58% and specificity 98–100%. Conclusion: Current data showed that US is less sensitive than MRI in the early detection of synovitis and tenosynovitis, but resulted in only few non-specific findings. The higher sensitivity of MRI is at the expense of less accessibility and higher costs

    Periostin Responds to Mechanical Stress and Tension by Activating the MTOR Signaling Pathway

    Get PDF
    Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway. Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling. Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular physiology through a mechanism mediated by the mTOR signaling cascade.This work was funded by the National Institutes of Health (NIH/NCI) P50-CA97248 (University of Michigan Head and Neck SPORE)
    • …
    corecore