26,972 research outputs found
Is resilience a normative concept?
In this paper, we engage with the question of the normative content of the resilience concept. The issues are approached in two consecutive steps. First, we proceed from a narrow construal of the resilience concept – as the ability of a system to absorb a disturbance – and show that under an analysis of normative concepts as evaluative concepts resilience comes out as descriptive. In the second part of the paper, we argue that (1) for systems of interest (primarily social systems or system with a social component) we seem to have options with respect to how they are described and (2) that this matters for what is to be taken as a sign of resilience as opposed to a sign of the lack of resilience for such systems. We discuss the implications of this for how the concept should be applied in practice and suggest that users of the resilience concept face a choice between versions of the concept that are either ontologically or normatively charged
Heat transport by laminar boundary layer flow with polymers
Motivated by recent experimental observations, we consider a steady-state
Prandtl-Blasius boundary layer flow with polymers above a slightly heated
horizontal plate and study how the heat transport might be affected by the
polymers. We discuss how a set of equations can be derived for the problem and
how these equations can be solved numerically by an iterative scheme. By
carrying out such a scheme, we find that the effect of the polymers is
equivalent to producing a space-dependent effective viscosity that first
increases from the zero-shear value at the plate then decreases rapidly back to
the zero-shear value far from the plate. We further show that such an effective
viscosity leads to an enhancement in the drag, which in turn leads to a
reduction in heat transport.Comment: 7 pages, 8 figures, 1 tabl
Magnetorotational-type instability in Couette-Taylor flow of a viscoelastic polymer liquid
We describe an instability of viscoelastic Couette-Taylor flow that is
directly analogous to the magnetorotational instability (MRI) in astrophysical
magnetohydrodynamics, with polymer molecules playing the role of magnetic field
lines. By determining the conditions required for the onset of instability and
the properties of the preferred modes, we distinguish it from the centrifugal
and elastic instabilities studied previously. Experimental demonstration and
investigation should be much easier for the viscoelastic instability than for
the MRI in a liquid metal. The analogy holds with the case of a predominantly
toroidal magnetic field such as is expected in an accretion disk and it may be
possible to access a turbulent regime in which many modes are unstable.Comment: 4 pages, 4 figures, to be published in Physical Review Letter
Reactive self-heating model of aluminum spherical nanoparticles
Aluminum-oxygen reaction is important in many highly energetic, high pressure
generating systems. Recent experiments with nanostructured thermites suggest
that oxidation of aluminum nanoparticles occurs in a few microseconds. Such
rapid reaction cannot be explained by a conventional diffusion-based mechanism.
We present a rapid oxidation model of a spherical aluminum nanoparticle, using
Cabrera-Mott moving boundary mechanism, and taking self-heating into account.
In our model, electric potential solves the nonlinear Poisson equation. In
contrast with the Coulomb potential, a "double-layer" type solution for the
potential and self-heating leads to enhanced oxidation rates. At maximal
reaction temperature of 2000 C, our model predicts overall oxidation time scale
in microseconds range, in agreement with experimental evidence.Comment: submitte
Evidence from Rb–Sr mineral ages for multiple orogenic events in the Caledonides of Shetland, Scotland
Shetland occupies a unique central location within the North Atlantic Caledonides. Thirty-three new high-precision Rb–Sr mineral ages indicate a polyorogenic history. Ages of 723–702 Ma obtained from the vicinity of the Wester Keolka Shear Zone indicate a Neoproterozoic (Knoydartian) age and preclude its correlation with the Silurian Moine Thrust. Ordovician ages of c. 480–443 Ma obtained from the Yell Sound Group and the East Mainland Succession constrain deformation fabrics and metamorphic assemblages to have formed during Grampian accretionary orogenic events, broadly contemporaneously with orogenesis of the Dalradian Supergroup in Ireland and mainland Scotland. The relative paucity of Silurian ages is attributed to a likely location at a high structural level in the Scandian nappe pile relative to mainland Scotland. Ages of c. 416 and c. 411 Ma for the Uyea Shear Zone suggest a late orogenic evolution that has more in common with East Greenland and Norway than with northern mainland Scotland
Thermodiffusion in model nanofluids by molecular dynamics simulations
In this work, a new algorithm is proposed to compute single particle
(infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics
simulations through the estimation of the thermophoretic force that applies on
a solute particle. This scheme is shown to provide consistent results for
simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic
nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion
amplitude, as well as thermal conductivity, decrease with nanoparticles
concentration. Then, in nanofluids in the liquid state, by changing the nature
of the nanoparticle (size, mass and internal stiffness) and of the solvent
(quality and viscosity) various trends are exhibited. In all cases the single
particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate
toward the cold area. The single particle thermal diffusion 2 coefficient is
shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4
nm), whereas it increases with the quality of the solvent and is inversely
proportional to the viscosity of the fluid. In addition, this coefficient is
shown to be independent of the mass of the nanoparticle and to increase with
the stiffness of the nanoparticle internal bonds. Besides, for these
configurations, the mass diffusion coefficient behavior appears to be
consistent with a Stokes-Einstein like law
The effects of organic farming on the soil physical environment
The aim of this research was to investigate the effects of organic farming practices on the development of soil physical properties, and in particular, soil structure in comparison with conventional agricultural management. The soil structure of organically and conventionally managed soils at one site was compared in a quantitative manner at different scales of observations using image analysis. Key soil physical and chemical properties were measured as well as the pore fractal geometry to characterise pore roughness. Organically managed soils had higher organic matter content and provided a more stable soil structure than conventionally managed soils. The higher porosity (%) at the macroscale in soil under conventional management was due to fewer larger pores while mesoand microscale porosity was found to be greater under organic management. Organically managed soils typically provided spatially well distributed pores of all sizes and of greater roughness compared to those under conventional management. These variations in the soil physical environment are likely to impact significantly on the performance of these soils for a number of key processes such as crop establishment and water availabilit
Droplet evaporation in one-component fluids: Dynamic van der Waals theory
In a one-component fluid, we investigate evaporation of a small axysymmetric
liquid droplet in the partial wetting condition on a heated wall at . In the dynamic van der Waals theory (Phys. Rev. E {\bf 75}, 036304
(2007)), we take into account the latent heat transport from liquid to gas upon
evaporation. Along the gas-liquid interface, the temperature is nearly equal to
the equilibrium coexisting temperature away from the substrate, but it rises
sharply to the wall temperature close to the substrate. On an isothermal
substrate, evaporation takes place mostly on a narrow interface region near the
contact line in a late stage, which is a characteristic feature in
one-component fluids.Comment: 6 pages, 6 figure
Infrared identification of IGR J09026-4812 as a Seyfert 1 galaxy
IGR J09026-4812 was discovered by INTEGRAL in 2006 as a new hard X-ray
source. Thereafter, an observation with Chandra pinpointed a single X-ray
source within the ISGRI error circle, showing a hard spectrum, and improving
its high-energy localisation to a subarcsecond accuracy. Thus, the X-ray source
was associated to the infrared counterpart 2MASS J09023731-4813339 whose JHKs
photometry indicated a highly reddened source. The high-energy properties and
the counterpart photometry suggested a high-mass X-ray binary with a main
sequence companion star located 6.3-8.1 kpc away and with a 0.3-10 keV
luminosity of 8e34 erg/s. New optical and infrared observations were needed to
confirm the counterpart and to reveal the nature of IGR J09026-4812. We
performed optical and near infrared observations on the counterpart 2MASS
J09023731-4813339 with the ESO/NTT telescope on March 2007. We achieved
photometry and spectroscopy in near infrared wavelengths and photometry in
optical wavelengths. The accurate astrometry at both optical and near infrared
wavelengths confirmed 2MASS J09023731-4813339 to be the counterpart of IGR
J09026-4812. However, the near infrared images show that the source is
extended, thus excluding any Galactic compact source possibility. The source
spectrum shows three main emission lines identified as the HeI lambda 1.0830
micron line, and the HI Pa_beta and Pa_alpha lines, typical in galaxies with an
active galactic nucleus. The broadness of these lines reached values as large
as 4000 km/s pointing towards a type 1 Seyfert galaxy. The redshift of the
source is z=0.0391(4). Thus, the near infrared photometry and spectroscopy
allowed us to classify IGR J09026-4812 as a Seyfert galaxy of type 1.Comment: 4 pages, 3 figures, Astronomy and Astrophysics in pres
- …
