Aluminum-oxygen reaction is important in many highly energetic, high pressure
generating systems. Recent experiments with nanostructured thermites suggest
that oxidation of aluminum nanoparticles occurs in a few microseconds. Such
rapid reaction cannot be explained by a conventional diffusion-based mechanism.
We present a rapid oxidation model of a spherical aluminum nanoparticle, using
Cabrera-Mott moving boundary mechanism, and taking self-heating into account.
In our model, electric potential solves the nonlinear Poisson equation. In
contrast with the Coulomb potential, a "double-layer" type solution for the
potential and self-heating leads to enhanced oxidation rates. At maximal
reaction temperature of 2000 C, our model predicts overall oxidation time scale
in microseconds range, in agreement with experimental evidence.Comment: submitte