138 research outputs found

    Prevalence and abundance of Cryptosporidium parvum and Giardia spp. in wild rural rodents from the Mazury Lake District region of Poland

    Get PDF
    Prevalence and abundance of Cryptosporodium parvum and Giardia spp. were studied in 3 species of rodents from forests and abandoned agricultural fields in N.E. Poland (Clethrionomys glareolus n=459; Microtus arvalis n=274; Apodemus flavicollis n=209). Overall prevalence was consistently higher in the voles compared with A. flavicollis (70±6, 73±0 and 27±8% respectively for C. parvum and 93±9, 96±3 and 48±3% respectively for Giardia spp.). Prevalence and abundance of infection also varied markedly across 3 years with 1998 being a year of higher prevalence and abundance with both species. Fewer older animals (especially C. glareolus and M. arvalis) carried infection with C. parvum and infections in these animals were relatively milder. Although seasonal differences were significant, no consistent pattern of changes was apparent. Host sex did not influence prevalence or abundance of infection with C. parvum, but made a small contribution to a 4-way interaction (in 5-way ANOVA) with other factors in the case of Giardia spp. The 2 species co-occurred significantly and in animals carrying both parasites there was a highly signficant positive correlation between abundance of infection with each, even with between-year, seasonal, host age, sex and species differences taken into account. Quantitative associations were confined to the 2 vole species in the study. These results are discussed in relation to the importance of wild rodents as reservoir hosts and sources of infection for local human communities

    A systematic review of the use of an expertise-based randomised controlled trial design

    Get PDF
    Acknowledgements JAC held a Medical Research Council UK methodology (G1002292) fellowship, which supported this research. The Health Services Research Unit, Institute of Applied Health Sciences (University of Aberdeen), is core-funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. Views express are those of the authors and do not necessarily reflect the views of the funders.Peer reviewedPublisher PD

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Clinical and Immunologic Features of Ultra-short Celiac Disease

    Get PDF
    BACKGROUND & AIMS: The clinical effects of gluten-sensitive enteropathy with villous atrophy limited to the duodenal bulb (D1) have not been delineated in adults with celiac disease. We investigated the sensitivity of D1 biopsy analysis in the detection of celiac disease, the number and sites of biopsies required to detect ultra-short celiac disease (USCD, villous atrophy limited to D1), and the clinical phenotype of USCD. METHODS: We performed a prospective study of 1378 patients (mean age, 50.3 y; 62% female) who underwent endoscopy at a tertiary medical center in the United Kingdom from 2008 through 2014; routine duodenal biopsy specimens were collected from D1 and the second part of the duodenum (D2). Quadrantic D1 biopsy specimens were collected from 171 consecutive patients with a high suspicion of celiac disease (mean age, 46.5 y; 64% female). Clinical data from patients diagnosed with USCD, based on biopsy analysis, were compared with those from patients with conventional celiac disease (CCD) (villous atrophy beyond D1) and individuals without celiac disease (controls). The number of intraepithelial lymphocytes (IELs) and immune phenotypes were compared between D1 vs D2 in patients with celiac disease. RESULTS: Of the 1378 patients assessed, 268 (19.4%) were diagnosed with celiac disease; 9.7% of these patients had villous atrophy confined to D1 (USCD; P < .0001). Collection of a single additional biopsy specimen from any D1 site increased the sensitivity of celiac disease detection by 9.3%–10.8% (P < .0001). Patients with USCD were younger (P ¼ .03), had lower titers of tissue transglutaminase antibody (P ¼ .001), and less frequently presented with diarrhea (P ¼ .001) than patients with CCD. Higher proportions of patients with CCD had ferritin deficiency (P ¼ .007) or folate deficiency (P ¼ .003) than patients with USCD or controls. Patients with celiac disease had a median of 50 IELs/100 enterocytes in D1 and a median of 48 IELs/100 enterocytes (P ¼ .7) in D2. The phenotype of IELs from patients with D1 celiac disease was indistinguishable from those of patients with D2 celiac disease. CONCLUSIONS: Collection of a single additional biopsy specimen from any site in the D1 intestine increases the sensitivity of detection for celiac disease. Patients with USCD may have early stage or limited celiac disease, with a mild clinical phenotype and infrequent nutritional deficiencies

    Transcriptional activity of Hyacinthus orientalis L. female gametophyte cells before and after fertilization

    Get PDF
    We characterized three phases of Hyacinthus orientalis L. embryo sac development, in which the transcriptional activity of the cells differed using immunolocalization of incorporated 5′-bromouracil, the total RNA polymerase II pool and the hypo- (initiation) and hyperphosphorylated (elongation) forms of RNA Pol II. The first stage, which lasts from the multinuclear stage to cellularization, is a period of high transcriptional activity, probably related to the maturation of female gametophyte cells. The second stage, encompassing the period of embryo sac maturity and the progamic phase, involves the transcriptional silencing of cells that will soon undergo fusion with male gametes. During this period in the hyacinth egg cell, there are almost no newly formed transcripts, and only a small pool of RNA Pol II is present in the nucleus. The transcriptional activity of the central cell is only slightly higher than that observed in the egg cell. The post-fertilization stage is related to the transcriptional activation of the zygote and the primary endosperm cell. The rapid increase in the pool of newly formed transcripts in these cells is accompanied by an increase in the pool of RNA Pol II, and the pattern of enzyme distribution in the zygote nucleus is similar to that observed in the somatic cells of the ovule. Our data, together with the earlier results of Pięciński et al. (2008), indicate post-fertilization synthesis and the maturation of numerous mRNA transcripts, suggesting that fertilization in H. orientalis induces the activation of the zygote and endosperm genomes

    Ribosomal RNA of Hyacinthus orientalis L. female gametophyte cells before and after fertilization

    Get PDF
    The nucleolar activity of Hyacinthus orientalis L. embryo sac cells was investigated. The distributions of nascent pre-rRNA (ITS1), 26S rRNA and of the 5S rRNA and U3 snoRNA were determined using fluorescence in situ hybridization (FISH). Our results indicated the different rRNA metabolism of the H. orientalis female gametophyte cells before and after fertilization. In the target cells for the male gamete, i.e., the egg cell and the central cell whose activity is silenced in the mature embryo sac (Pięciński et al. in Sex Plant Reprod 21:247–257, 2008; Niedojadło et al. in Planta doi:10.1007/s00425-012-1599-9, 2011), rRNA metabolism is directed at the accumulation of rRNPs in the cytoplasm and immature transcripts in the nucleolus. In both cells, fertilization initiates the maturation of the maternal pre-rRNA and the expression of zygotic rDNA. The resumption of rRNA transcription observed in the hyacinth zygote indicates that in plants, there is a different mechanism for the regulation of RNA Pol I activity than in animals. In synergids and antipodal cells, which have somatic functions, the nucleolar activity is correlated with the metabolic activity of these cells and changes in successive stages of embryo sac development

    Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates

    Get PDF
    Terrestrial invertebrates are key components in ecosystems, with crucial roles in soil structure, functioning, and ecosystem services. The present chapter covers how terrestrial invertebrates are impacted by organic chemicals, focusing on up-to-date information regarding bioavailability, exposure routes and general concepts on bioaccumulation, toxicity, and existing models. Terrestrial invertebrates are exposed to organic chemicals through different routes, which are dependent on both the organismal traits and nature of exposure, including chemical properties and media characteristics. Bioaccumulation and toxicity data for several groups of organic chemicals are presented and discussed, attempting to cover plant protection products (herbicides, insecticides, fungicides, and molluscicides), veterinary and human pharmaceuticals, polycyclic aromatic compounds, polychlorinated biphenyls, flame retardants, and personal care products. Chemical mixtures are also discussed bearing in mind that chemicals appear simultaneously in the environment. The biomagnification of organic chemicals is considered in light of the consumption of terrestrial invertebrates as novel feed and food sources. This chapter highlights how science has contributed with data from the last 5 years, providing evidence on bioavailability, bioaccumulation, and toxicity derived from exposure to organic chemicals, including insights into the main challenges and shortcomings to extrapolate results to real exposure scenarios
    corecore