1,191 research outputs found

    Action-Angle variables for the Gel'fand-Dikii flows

    Full text link
    Using the scattering transform for nthn^{th} order linear scalar operators, the Poisson bracket found by Gel'fand and Dikii, which generalizes the Gardner Poisson bracket for the KdV hierarchy, is computed on the scattering side. Action-angle variables are then constructed. Using this, complete integrability is demonstrated in the strong sense. Real action-angle variables are constructed in the self-adjoint case

    Abdominal Complications of the Influenza Epidemic at Camp Custer, Mich.

    Get PDF
    n/

    Non-Linear Evolution Equations with Non-Analytic Dispersion Relations in 2+1 Dimensions. Bilocal Approach

    Full text link
    A method is proposed of obtaining (2+1)-dimensional non- linear equations with non-analytic dispersion relations. Bilocal formalism is shown to make it possible to represent these equations in a form close to that for their counterparts in 1+1 dimensions.Comment: 13 pages, to be published in J. Phys.

    General soliton matrices in the Riemann-Hilbert problem for integrable nonlinear equations

    Full text link
    We derive the soliton matrices corresponding to an arbitrary number of higher-order normal zeros for the matrix Riemann-Hilbert problem of arbitrary matrix dimension, thus giving the complete solution to the problem of higher-order solitons. Our soliton matrices explicitly give all higher-order multi-soliton solutions to the nonlinear partial differential equations integrable through the matrix Riemann-Hilbert problem. We have applied these general results to the three-wave interaction system, and derived new classes of higher-order soliton and two-soliton solutions, in complement to those from our previous publication [Stud. Appl. Math. \textbf{110}, 297 (2003)], where only the elementary higher-order zeros were considered. The higher-order solitons corresponding to non-elementary zeros generically describe the simultaneous breakup of a pumping wave (u3)(u_3) into the other two components (u1u_1 and u2u_2) and merger of u1u_1 and u2u_2 waves into the pumping u3u_3 wave. The two-soliton solutions corresponding to two simple zeros generically describe the breakup of the pumping u3u_3 wave into the u1u_1 and u2u_2 components, and the reverse process. In the non-generic cases, these two-soliton solutions could describe the elastic interaction of the u1u_1 and u2u_2 waves, thus reproducing previous results obtained by Zakharov and Manakov [Zh. Eksp. Teor. Fiz. \textbf{69}, 1654 (1975)] and Kaup [Stud. Appl. Math. \textbf{55}, 9 (1976)].Comment: To appear in J. Math. Phy

    A Riemann-Hilbert Problem for an Energy Dependent Schr\"odinger Operator

    Full text link
    \We consider an inverse scattering problem for Schr\"odinger operators with energy dependent potentials. The inverse problem is formulated as a Riemann-Hilbert problem on a Riemann surface. A vanishing lemma is proved for two distinct symmetry classes. As an application we prove global existence theorems for the two distinct systems of partial differential equations ut+(u2/2+w)x=0,wt±uxxx+(uw)x=0u_t+(u^2/2+w)_x=0, w_t\pm u_{xxx}+(uw)_x=0 for suitably restricted, complementary classes of initial data

    On the Caudrey-Beals-Coifman System and the Gauge Group Action

    Get PDF
    The generalized Zakharov-Shabat systems with complex-valued Cartan elements and the systems studied by Caudrey, Beals and Coifman (CBC systems) and their gauge equivalent are studies. This includes: the properties of fundamental analytical solutions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering data; the description of the class of nonlinear evolutionary equations solvable by the inverse scattering method and the recursion operator, related to such systems; the hierarchies of Hamiltonian structures.Comment: 12 pages, no figures, contribution to the NEEDS 2007 proceedings (Submitted to J. Nonlin. Math. Phys.

    The geometric sense of R. Sasaki connection

    Full text link
    For the Riemannian manifold MnM^{n} two special connections on the sum of the tangent bundle TMnTM^{n} and the trivial one-dimensional bundle are constructed. These connections are flat if and only if the space MnM^{n} has a constant sectional curvature ±1\pm 1. The geometric explanation of this property is given. This construction gives a coordinate free many-dimensional generalization of the connection from the paper: R. Sasaki 1979 Soliton equations and pseudospherical surfaces, Nuclear Phys., {\bf 154 B}, pp. 343-357. It is shown that these connections are in close relation with the imbedding of MnM^{n} into Euclidean or pseudoeuclidean (n+1)(n+1)-dimension spaces.Comment: 7 pages, the key reference to the paper of Min-Oo is included in the second versio

    Constructive factorization of LPDO in two variables

    Full text link
    We study conditions under which a partial differential operator of arbitrary order nn in two variables or ordinary linear differential operator admits a factorization with a first-order factor on the left. The factorization process consists of solving, recursively, systems of linear equations, subject to certain differential compatibility conditions. In the generic case of partial differential operators one does not have to solve a differential equation. In special degenerate cases, such as ordinary differential, the problem is finally reduced to the solution of some Riccati equation(s). The conditions of factorization are given explicitly for second- and, and an outline is given for the higher-order case.Comment: 16 pages, to be published in Journal "Theor. Math. Phys." (2005

    A 3-component extension of the Camassa-Holm hierarchy

    Full text link
    We introduce a bi-Hamiltonian hierarchy on the loop-algebra of sl(2) endowed with a suitable Poisson pair. It gives rise to the usual CH hierarchy by means of a bi-Hamiltonian reduction, and its first nontrivial flow provides a 3-component extension of the CH equation.Comment: 15 pages; minor changes; to appear in Letters in Mathematical Physic

    Qualitative and Quantitative Evaluation of Indirect Immuno-fluorescent H-2 Stain on Tissue Sections

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65483/1/j.1399-0039.1979.tb00826.x.pd
    corecore