169 research outputs found

    Hexanuclear Ln6L6 Complex Formation by using an Unsymmetric Ligand

    Get PDF
    Multinuclear, self‐assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self‐assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self‐assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the centre of a homoditopic ligand governs formation of an unusual Ln6L6 complex with coordinatively unsaturated metal centres. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6L6 complex. The atypical Ln6L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6L6 and Eu2L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6L6 structure indicative of non‐radiative decay processes. Synthesis of the Gd6L6analogue allows three distinct Gd···Gd distance measurements to be extracted using homo‐RIDME EPR experiments

    The Solutions of the NLS Equations with Self-Consistent Sources

    Full text link
    We construct the generalized Darboux transformation with arbitrary functions in time tt for the AKNS equation with self-consistent sources (AKNSESCS) which, in contrast with the Darboux transformation for the AKNS equation, provides a non-auto-B\"{a}cklund transformation between two AKNSESCSs with different degrees of sources. The formula for N-times repeated generalized Darboux transformation is proposed. By reduction the generalized Darboux transformation with arbitrary functions in time tt for the Nonlinear Schr\"{o}dinger equation with self-consistent sources (NLSESCS) is obtained and enables us to find the dark soliton, bright soliton and positon solutions for NLS+^{+}ESCS and NLS−^{-}ESCS. The properties of these solution are analyzed.Comment: 24 pages, 3 figures, to appear in Journal of Physics A: Mathematical and Genera

    Identification and proteomic profiling of exosomes in human cerebrospinal fluid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exosomes are released from multiple cell types, contain protein and RNA species, and have been exploited as a novel reservoir for disease biomarker discovery. They can transfer information between cells and may cause pathology, for example, a role for exosomes has been proposed in the pathophysiology of Alzheimer's disease. Although studied in several biofluids, exosomes have not been extensively studied in the cerebrospinal fluid (CSF) from humans. The objective of this study was to determine: 1) whether human CSF contains exosomes and 2) the variability in exosomal protein content across individuals.</p> <p>Methods</p> <p>CSF was collected from 5 study participants undergoing thoraco-abdominal aortic aneurysm repair (around 200 - 500 ml per participant) and low-density membrane vesicles were concentrated by ultracentrifugation. The presence of exosomes was determined by western blot for marker proteins, isopycnic centrifugation on a sucrose step gradient and transmission electron microscopy with immuno-labelling. Whole protein profiling was performed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR).</p> <p>Results</p> <p>Flotillin 1 and tumor susceptibility gene 101 (TSG101), two exosomal marker proteins, were identified in the ultracentrifugation pellet using western blot. These markers localized to a density consistent with exosomes following isopycnic centrifugation. Transmission electron microscopy visualized structures consistent with exosomes in size and appearance that labelled positive for flotillin 1. Therefore, the pellet that resulted from ultracentrifugation of human CSF contained exosomes. FT-ICR profiling of this pellet was performed and 84-161 ions were detected per study participant. Around one third of these ions were only present in a single study participant and one third were detected in all five. With regard to ion quantity, the median coefficient of variation was 81% for ions detected in two or more samples.</p> <p>Conclusions</p> <p>Exosomes were identified in human CSF and their proteome is a potential new reservoir for biomarker discovery in neurological disorders such as Alzheimer's disease. However, techniques used to concentrate exosomes from CSF need refinement to reduce variability. In this study we used relatively large starting volumes of human CSF, future studies will focus on exosome isolation from smaller 'real life' clinical samples; a key challenge in the development of exosomes as translational tools.</p

    Interplay between chromophore binding and domain assembly by the B<sub>12</sub>-dependent photoreceptor protein, CarH.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-05-01, epub 2021-05-05Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; Grant(s): BB/L002655/1, BB/L016486/1, BB/M011208/1Organisms across the natural world respond to their environment through the action of photoreceptor proteins. The vitamin B12-dependent photoreceptor, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids to protect against photo-oxidative stress. The binding of B12 to CarH monomers in the dark results in the formation of a homo-tetramer that complexes with DNA; B12 photochemistry results in tetramer dissociation, releasing DNA for transcription. Although the details of the response of CarH to light are beginning to emerge, the biophysical mechanism of B12-binding in the dark and how this drives domain assembly is poorly understood. Here - using a combination of molecular dynamics simulations, native ion mobility mass spectrometry and time-resolved spectroscopy - we reveal a complex picture that varies depending on the availability of B12. When B12 is in excess, its binding drives structural changes in CarH monomers that result in the formation of head-to-tail dimers. The structural changes that accompany these steps mean that they are rate-limiting. The dimers then rapidly combine to form tetramers. Strikingly, when B12 is scarcer, as is likely in nature, tetramers with native-like structures can form without a B12 complement to each monomer, with only one apparently required per head-to-tail dimer. We thus show how a bulky chromophore such as B12 shapes protein/protein interactions and in turn function, and how a protein can adapt to a sub-optimal availability of resources. This nuanced picture should help guide the engineering of B12-dependent photoreceptors as light-activated tools for biomedical applications

    3D mappings by generalized joukowski transformations

    Get PDF
    The classical Joukowski transformation plays an important role in di erent applications of conformal mappings, in particular in the study of ows around the so-called Joukowski airfoils. In the 1980s H. Haruki and M. Barran studied generalized Joukowski transformations of higher order in the complex plane from the view point of functional equations. The aim of our contribution is to study the analogue of those generalized Joukowski transformations in Euclidean spaces of arbitrary higher dimension by methods of hypercomplex analysis. They reveal new insights in the use of generalized holomorphic functions as tools for quasi-conformal mappings. The computational experiences focus on 3D-mappings of order 2 and their properties and visualizations for di erent geometric con gurations, but our approach is not restricted neither with respect to the dimension nor to the order.Financial support from "Center for Research and Development in Mathematics and Applications" of the University of Aveiro, through the Portuguese Foundation for Science and Technology (FCT), is gratefully acknowledged. The research of the first author was also supported by the FCT under the fellowship SFRH/BD/44999/2008. Moreover, the authors would like to thank the anonymous referees for their helpful comments and suggestions which improved greatly the final manuscript

    Structural studies of metal ligand complexes by ion mobility-mass spectrometry

    Get PDF
    Collision cross sections (CCS) have been measured for three salen ligands, and their complexes with copper and zinc using travelling-wave ion mobility-mass spectrometry (TWIMS) and drift tube ion mobility-mass spectrometry (DTIMS), allowing a comparative size evaluation of the ligands and complexes. CCS measurements using TWIMS were determined using peptide and TAAH calibration standards. TWIMS measurements gave significantly larger CCS than DTIMS in helium, by 9 % for TAAH standards and 3 % for peptide standards, indicating that the choice of calibration standards is important in ensuring the accuracy of TWIMS-derived CCS measurements. Repeatability data for TWIMS was obtained for inter- and intra-day studies with mean RSDs of 1. 1 % and 0. 7 %, respectively. The CCS data obtained from IM-MS measurements are compared to CCS values obtained via the projection approximation, the exact hard spheres method and the trajectory method from X-ray coordinates and modelled structures using density functional theory (DFT) based methods. Š 2013 Springer-Verlag Berlin Heidelberg

    Partial Deletion of Chromosome 8 β-defensin Cluster Confers Sperm Dysfunction and Infertility in Male Mice

    Get PDF
    β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9) in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility
    • …
    corecore