1,069 research outputs found

    The CACAO Method for Smoothing, Gap Filling, and Characterizing Seasonal Anomalies in Satellite Time Series

    Get PDF
    Consistent, continuous, and long time series of global biophysical variables derived from satellite data are required for global change research. A novel climatology fitting approach called CACAO (Consistent Adjustment of the Climatology to Actual Observations) is proposed to reduce noise and fill gaps in time series by scaling and shifting the seasonal climatological patterns to the actual observations. The shift and scale CACAO parameters adjusted for each season allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. CACAO was assessed first over simulated daily Leaf Area Index (LAI) time series with varying fractions of missing data and noise. Then, performances were analyzed over actual satellite LAI products derived from AVHRR Long-Term Data Record for the 1981-2000 period over the BELMANIP2 globally representative sample of sites. Comparison with two widely used temporal filtering methods-the asymmetric Gaussian (AG) model and the Savitzky-Golay (SG) filter as implemented in TIMESAT-revealed that CACAO achieved better performances for smoothing AVHRR time series characterized by high level of noise and frequent missing observations. The resulting smoothed time series captures well the vegetation dynamics and shows no gaps as compared to the 50-60% of still missing data after AG or SG reconstructions. Results of simulation experiments as well as confrontation with actual AVHRR time series indicate that the proposed CACAO method is more robust to noise and missing data than AG and SG methods for phenology extraction

    Joint searches between gravitational-wave interferometers and high-energy neutrino telescopes: science reach and analysis strategies

    Get PDF
    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves (GWs) and high-energy neutrinos (HENs). A network of GW detectors such as LIGO and Virgo can determine the direction/time of GW bursts while the IceCube and ANTARES neutrino telescopes can also provide accurate directional information for HEN events. Requiring the consistency between both, totally independent, detection channels shall enable new searches for cosmic events arriving from potential common sources, of which many extra-galactic objects.Comment: 4 pages. To appear in the Proceedings of the 2d Heidelberg Workshop: "High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources", Heidelberg (Germany), January 13-16, 200

    Drop Traffic in Microfluidic Ladder Networks with Fore-Aft Structural Asymmetry

    Full text link
    We investigate the dynamics of pairs of drops in microfluidic ladder networks with slanted bypasses, which break the fore-aft structural symmetry. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative drop spacing, enabling them to contract, synchronize, expand, or even flip at the ladder exit. Our experiments confirm all these behaviors predicted by theory. Numerical analysis further shows that while ladder networks containing several identical bypasses are limited to nearly linear transformation of input delay between drops, mixed combination of bypasses can cause significant non-linear transformation enabling coding and decoding of input delays.Comment: 4 pages, 5 figure

    Search for an association between neutrinos and radio-selected blazars with ANTARES

    Get PDF
    Recently, evidence for an association between high energy neutrinos detected by IceCube and radio-selected blazars has been found by Plavin et al.(2020, 2021). This result wa.s achieved using an all sky complete sample of 3411 blazars selected on their parsec-scale flux density at 8 GHz higher than 150 mJy. We perform a positional correlation analysis using the same sample of radioselected blazars, with the latest point source sample of neutrinos extracted from the data collected by the ANTARES detector between January 29, 2007 and February 28, 2020. Preliminary results are presented and discussedPostprint (published version

    Accelerator Testing of the General Antiparticle Spectrometer, a Novel Approach to Indirect Dark Matter Detection

    Full text link
    We report on recent accelerator testing of a prototype general antiparticle spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches that exploits the antideuterons produced in neutralino-neutralino annihilations. GAPS captures these antideuterons into a target with the subsequent formation of exotic atoms. These exotic atoms decay with the emission of X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. This signature uniquely characterizes the antideuterons. Preliminary analysis of data from a prototype GAPS in an antiproton beam at the KEK accelerator in Japan has confirmed the multi-X-ray/pion star topology and indicated X-ray yields consistent with prior expectations. Moreover our success in utilizing solid rather than gas targets represents a significant simplification over our original approach and offers potential gains in sensitivity through reduced dead mass in the target area.Comment: 18 pages, 9 figures, submitted to JCA

    Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector

    Get PDF
    Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV, thanks to the inclusion of both track-like events (mainly induced by ¿µ chargedcurrent interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within ±500 s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,¿ emitted as neutrinos of all flavours and on the ratio f¿ = Etot,¿/EGW between neutrino and GW emissions are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,¿ < 4.0 × 1053 erg and f¿ < 0.15 (respectively, Etot,¿ < 3.2 × 1053 erg and f¿ < 0.88) for E-2 spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been testedPeer ReviewedA. Albert, S. Alves, M. André, M. Ardid, S. Ardid, J.-J. Aubert, J. Aublin, B. Baret, S. Basa, Y. Becherini, B. Belhorma, M. Bendahman, F. Benfenati, V. Bertin, S. Biagi, M. Bissinger, J. Boumaaza, M. Bouta, M.C. Bouwhuis, H. Brânzaş, R. Bruijn, J. Brunner, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, L. Caramete, F. Carenini, J. Carr, V. Carretero, S. Celli, L. Cerisy, M. Chabab, T.N. Chau, R. Cherkaoui El Moursli, T. Chiarusi, M. Circella, J.A.B. Coelho, A. Coleiro, R. Coniglione, P. Coyle, A. Creusot, A.S.M. Cruz, A.F. Díaz, B. De Martino, C. Distefano, I. Di Palma, A. Domi, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, T. van Eeden, D. van Eijk, S. El Hedri, N. El Khayati, A. Enzenhöfer, P. Fermani, G. Ferrara, F. Filippini, L. Fusco, S. Gagliardini, J. García, C. Gatius Oliver, P. Gay, N. Geißelbrecht, H. Glotin, R. Gozzini, R. Gracia Ruiz, K. Graf, C. Guidi, L. Haegel, S. Hallmann, H. van Haren, A.J. Heijboer, Y. Hello, J.J. Hernández-Rey, J. Hößl, J. Hofestädt, F. Huang, G. Illuminati, C.W. James, B. Jisse-Jung, M. de Jong, P. de Jong, M. Kadler, O. Kalekin, U. Katz, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, M. Lamoureux, A. Lazo, D. Lefèvre, E. Leonora, G. Levi, S. Le Stum, D. Lopez-Coto, S. Loucatos, L. Maderer, J. Manczak, M. Marcelin, A. Margiotta, A. Marinelli, J.A. Martínez-Mora, P. Migliozzi, A. Moussa, R. Muller, L. Nauta, S. Navas, E. Nezri, B. Ó Fearraigh, A. Păun, G.E. Păvălaş, M. Perrin-Terrin, V. Pestel, P. Piattelli, C. Poirè, V. Popa, T. Pradier, N. Randazzo, D. Real, S. Reck, G. Riccobene, A. Romanov, A. Sánchez-Losa, A. Saina, F. Salesa Greus, D.F.E. Samtleben, M. Sanguineti, P. Sapienza, J. Schnabel, J. Schumann, F. Schüssler, J. Seneca, M. Spurio, Th. Stolarczyk, M. Taiuti, Y. Tayalati, S.J. Tingay, B. Vallage, G. Vannoye, V. Van Elewyck, S. Viola, D. Vivolo, J. Wilms, S. Zavatarelli, A. Zegarelli, J.D. Zornoza, J. ZúñigaPostprint (published version

    Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt

    Get PDF
    In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve food security, accurate assessment of local crop production is key. However, production estimates in heterogeneous smallholder farming systems often rely on labor-intensive surveys that are not easily scalable, nor exhaustive. Recent advances in high-resolution earth observation (EO) open up new possibilities to work in heterogeneous smallholder systems. This paper develops a method to estimate individual crop production at farm-to-community scales using high-resolution Sentinel-2 time series and ground data in the commune of Koningue, Mali. Our estimation of agricultural production relies on (i) a supervised, pixel-based crop type classification inside an existing cropland mask, (ii) a comparison of yield estimators based on spectral indices and derived leaf area index (LAI), and (iii) a Monte Carlo approach combining the resulting unbiased crop area estimate and the uncertainty on the associated yield estimate. Results show that crop types can be mapped from Sentinel-2 data with 80% overall accuracy (OA), with best performances observed for cotton (Fscore 94%), maize (88%) and millet (83%), while peanut (71%) and sorghum (46%) achieve less. Incorporation of parcel limits extracted from very high-resolution imagery is shown to increase OA to 85%. Obtained through inverse radiative transfer modeling, Sen2-Agri estimates of LAI achieve better prediction of final grain yield than various vegetation indices, reaching R2 of 0.68, 0.62, 0.8 and 0.48 for cotton, maize, millet and sorghum respectively. The uncertainty of Monte Carlo production estimates does not exceed 0.3% of the total production for each crop type

    The AMS-02 RICH Imager Prototype - In-Beam Tests with 20 GeV/c per Nucleon Ions -

    Full text link
    A prototype of the AMS Cherenkov imager (RICH) has been tested at CERN by means of a low intensity 20 GeV/c per nucleon ion beam obtained by fragmentation of a primary beam of Pb ions. Data have been collected with a single beam setting, over the range of nuclear charges 2<Z<~45 in various beam conditions and using different radiators. The charge Z and velocity beta resolutions have been measured.Comment: 4 pages, contribution to the ICRC 200

    Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope

    Full text link
    [EN] On 2019 October 1, the IceCube Collaboration detected a muon track neutrino with a high probability of being of astrophysical origin, IC191001A. After a few hours, the tidal disruption event (TDE) AT2019dsg, observed by the Zwicky Transient Facility (ZTF), was indicated as the most likely counterpart of the IceCube track. More recently, the follow-up campaign of the IceCube alerts by ZTF suggested a second TDE, AT2019fdr, as a promising counterpart of another IceCube muon track candidate, IC200530A, detected on 2020 May 30. Here, these intriguing associations are followed-up by searching for neutrinos in the ANTARES detector from the directions of AT2019dsg and AT2019fdr using a time-integrated approach. As no significant evidence for space clustering is found in the ANTARES data, upper limits on the one-flavor neutrino flux and fluence are set.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.Albert, A.; Alves, S.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.; Aubert, J.... (2021). Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope. The Astrophysical Journal. 920(1):1-6. https://doi.org/10.3847/1538-4357/ac16d616920

    Global Wheat Head Detection (GWHD) dataset: a large and diverse dataset of high resolution RGB labelled images to develop and benchmark wheat head detection methods

    Get PDF
    Detection of wheat heads is an important task allowing to estimate pertinent traits including head population density and head characteristics such as sanitary state, size, maturity stage and the presence of awns. Several studies developed methods for wheat head detection from high-resolution RGB imagery. They are based on computer vision and machine learning and are generally calibrated and validated on limited datasets. However, variability in observational conditions, genotypic differences, development stages, head orientation represents a challenge in computer vision. Further, possible blurring due to motion or wind and overlap between heads for dense populations make this task even more complex. Through a joint international collaborative effort, we have built a large, diverse and well-labelled dataset, the Global Wheat Head detection (GWHD) dataset. It contains 4,700 high-resolution RGB images and 190,000 labelled wheat heads collected from several countries around the world at different growth stages with a wide range of genotypes. Guidelines for image acquisition, associating minimum metadata to respect FAIR principles and consistent head labelling methods are proposed when developing new head detection datasets. The GWHD is publicly available at http://www.global-wheat.com/ and aimed at developing and benchmarking methods for wheat head detection.Comment: 16 pages, 7 figures, Dataset pape
    corecore