304 research outputs found
Continuous Statistical Models: With or Without Truncation Parameters?
Lifetime data are usually assumed to stem from a continuous distribution supported on [0, b) for some b ≤ ∞. The continuity assumption implies that the support of the distribution does not have atom points, particularly not at 0. Accordingly, it seems reasonable that with an accurate measurement tool all data observations will be positive. This suggests that the true support may be truncated from the left. In this work we investigate the effects of adding a left truncation parameter to a continuous lifetime data statistical model. We consider two main settings: right truncation parametric models with possible left truncation, and exponential family models with possible left truncation. We analyze the performance of some optimal estimators constructed under the assumption of no left truncation when left truncation is present, and vice versa. We investigate both asymptotic and finite-sample behavior of the estimators. We show that when left truncation is not assumed but is, in fact present, the estimators have a constant bias term, and therefore will result in inaccurate and inefficient estimation. We also show that assuming left truncation where actually there is none, typically does not result in substantial inefficiency, and some estimators in this case are asymptotically unbiased and efficient
Disorder Potentials near Lithographically Fabricated Atom Chips
We show that previously observed large disorder potentials in magnetic
microtraps for neutral atoms are reduced by about two orders of magnitude when
using atom chips with lithographically fabricated high quality gold layers.
Using one dimensional Bose-Einstein condensates, we probe the remaining
magnetic field variations at surface distances down to a few microns.
Measurements on a 100 um wide wire imply that residual variations of the
current flow result from local properties of the wire.Comment: submitted on September 24th, 200
Electronic structure of and Quantum size effect in III-V and II-VI semiconducting nanocrystals using a realistic tight binding approach
We analyze the electronic structure of group III-V semiconductors obtained
within full potential linearized augmented plane wave (FP-LAPW) method and
arrive at a realistic and minimal tight-binding model, parameterized to provide
an accurate description of both valence and conduction bands. It is shown that
cation sp3 - anion sp3d5 basis along with the next nearest neighbor model for
hopping interactions is sufficient to describe the electronic structure of
these systems over a wide energy range, obviating the use of any fictitious s*
orbital, employed previously. Similar analyses were also performed for the
II-VI semiconductors, using the more accurate FP-LAPW method compared to
previous approaches, in order to enhance reliability of the parameter values.
Using these parameters, we calculate the electronic structure of III-V and
II-VI nanocrystals in real space with sizes ranging upto about 7 nm in
diameter, establishing a quantitatively accurate description of the band-gap
variation with sizes for the various nanocrystals by comparing with available
experimental results from the literature.Comment: 28 pages, 8 figures, Accepted for publication in Phys. Rev.
Feasibility of detecting single atoms using photonic bandgap cavities
We propose an atom-cavity chip that combines laser cooling and trapping of
neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to
the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The
feasibility of this device for detecting single atoms is analyzed using both a
semi-classical treatment and an unconditional master equation approach.
Single-atom detection seems achievable in an initial experiment involving the
non-deterministic delivery of weakly trapped atoms into the mode of the PBG
cavity.Comment: 11 pages, 5 figure
Distribution and Extinction of Ungulates during the Holocene of the Southern Levant
BACKGROUND: The southern Levant (Israel, Palestinian Authority and Jordan) has been continuously and extensively populated by succeeding phases of human cultures for the past 15,000 years. The long human impact on the ancient landscape has had great ecological consequences, and has caused continuous and accelerating damage to the natural environment. The rich zooarchaeological data gathered at the area provide a unique opportunity to reconstruct spatial and temporal changes in wild species distribution, and correlate them with human demographic changes. METHODOLOGY: Zoo-archaeological data (382 animal bone assemblages from 190 archaeological sites) from various time periods, habitats and landscapes were compared. The bone assemblages were sorted into 12 major cultural periods. Distribution maps showing the presence of each ungulate species were established for each period. CONCLUSIONS: The first major ungulate extinction occurred during the local Iron Age (1,200-586 BCE), a period characterized by significant human population growth. During that time the last of the largest wild ungulates, the hartebeest (Alcelaphus buselaphus), aurochs (Bos primigenius) and the hippopotamus (Hippopotamus amphibius) became extinct, followed by a shrinking distribution of forest-dwelling cervids. A second major wave of extinction occurred only in the 19th and 20th centuries CE. Furthermore, a negative relationship was found between the average body mass of ungulate species that became extinct during the Holocene and their extinction date. It is thus very likely that the intensified human activity through habitat destruction and uncontrolled hunting were responsible for the two major waves of ungulate extinction in the southern Levant during the late Holocene
- …
